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Abstract	

The	Adolescent	Brain	Cognitive	Development	(ABCD)	Study	is	the	largest	single-cohort	

prospective	longitudinal	study	of	neurodevelopment	and	children’s	health	in	the	United	

States.	A	cohort	of	𝑛 =	11,878	children	aged	9-10	years	(and	their	parents/guardians)	

were	recruited	across	22	sites	and	are	being	followed	with	in-person	visits	on	an	annual	

basis	for	at	least	10	years.	The	study	approximates	the	US	population	on	several	key	

sociodemographic	variables,	including	sex,	race,	ethnicity,	household	income,	and	parental	

education.	Data	collected	include	assessments	of	health,	mental	health,	substance	use,	

culture	and	environment	and	neurocognition,	as	well	as	geocoded	exposures,	structural	

and	functional	magnetic	resonance	imaging	(MRI),	and	whole-genome	genotyping.	Here,	

we	describe	the	ABCD	study	aims	and	design,	as	well	as	issues	surrounding	estimation	and	

interpretation	of	meaningful	effect	sizes	using	its	data,	including	population	inferences,	

hypothesis	testing,	power	and	precision,	control	of	covariates,	and	interpretation	of	effects.	
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1.0 Introduction	

The	Adolescent	Brain	Cognitive	Development	(ABCD)	StudySM	is	the	largest	single-cohort	

long-term	longitudinal	study	of	neurodevelopment	and	child	and	adolescent	health	in	the	

United	States.	The	study	was	conceived	and	initiated	by	the	United	States’	National	

Institutes	of	Health	(NIH),	with	funding	beginning	on	September	30,	2015.	The	ABCD	

Study©	is	epidemiologically	informed	in	that	observational	data	are	collected	to	

characterize	US	population	trait	distributions	and	how	biological,	psychological,	and	

environmental	factors	(including	interpersonal,	institutional,	cultural,	and	physical	

environments)	can	influence	how	individuals	live	and	develop	in	today’s	society.	From	the	

outset,	the	NIH	and	ABCD	scientific	investigators	were	motivated	to	develop	a	baseline	

sample	that	reflected	the	sociodemographic	variation	present	in	the	US	population	of	9-10	

year-old	children,	and	to	follow	them	longitudinally	through	adolescence	and	into	early	

adulthood.	

Population	representativeness,	or	more	precisely,	absence	of	uncorrected	selection	bias	in	

the	subject	pool,	is	important	in	achieving	external	validity,	i.e.,	the	ability	to	generalize	

specific	results	of	the	study	to	US	society	at	large.	As	described	below,	the	ABCD	Study	

attempted	to	match	the	diverse	US	population	of	9-10	year-old	children	on	key	

demographic	characteristics.	However,	even	with	a	largely	representative	sample,	failure	to	

measure	key	confounding	factors	or	to	assess	important	moderating	or	mediating	

relationships	can	affect	the	external	validity	and	interpretability	of	study	findings.	Thus,	it	

is	crucial	that	the	study	collects,	longitudinally,	a	rich	array	of	variables	that	can	act	as	

moderators	or	confounds,	biological	and	environmental	data,	and	behavioral	and	health-

related	phenotypes,	in	order	to	aid	in	identifying	potentially	causal	pathways	of	interest,	to	



quantify	individualized	risk	for	(or	resilience	to)	poor	outcomes,	and	to	inform	public	

policy	decisions.	External	validity	and	interpretability	also	depend	on	assessing	the	impact	

of	systematic	and	random	measurement	error,	implementing	analytic	methods	that	

incorporate	relevant	aspects	of	study	design,	and	emphasizing	robust	and	replicable	

estimation	of	associations.	

The	ABCD	cohort	is	large	enough	to	reliably	detect	even	small	non-null	associations	related	

to	many	developmental	outcomes.	It	is	therefore	directly	addressing	the	over-estimation	of	

association	strength	and	replication	issues	affecting	much	of	current	behavioral	and	

neuroscience	research1,2.	Given	the	large	sample	size	of	the	ABCD	cohort,	emphasis	should	

be	placed	on	replicable,	unbiased	estimation	of	effects	rather	than	mere	statistical	

significance.	Indeed,	a	primary	strength	of	ABCD	is	that	more	accurate	assessment	of	effect	

sizes	promotes	realistic	judgments	as	to	the	relevance	and	utility	of	associations	for	

understanding	mechanisms,	for	precision	medicine,	and	for	public	health	policy.	Validity	of	

observed	associations	also	entails	thoughtful	control	of	potential	confounding	factors3.	

Furthermore,	a	large	sample	size	and	rich	assessment	protocol	enable	the	construction	of	

more	realistically	complex	etiological	models	which	simultaneously	incorporate	factors	

from	multiple	domains.	Even	if	the	effects	of	individual	factors	are	small,	as	has	been	the	

case	in	other	large	epidemiological	samples4,5,	they	may	still	be	useful	for	uncovering	the	

genetic	and	environmental	mechanisms	of	neurodevelopment,	behavior,	and	health.	Many	

small	effects	may	in	concert	explain	a	sizeable	proportion	of	the	variation	in	

neurodevelopmental	trajectories,	as	has	been	recently	demonstrated	in	genome-wide	



association	analyses	of	complex	traits6.	Moreover,	effects	may	accumulate	as	subjects	pass	

through	adolescence	into	early	adulthood.	

The	ABCD	Study	was	conceived	to	address	some	of	the	most	important	public	health	

questions	facing	today’s	children	and	adolescents7.	These	questions	include	identifying	

factors	leading	to	the	initiation	and	consumption	patterns	of	psychoactive	substances,	

substance-related	problems,	and	substance	use	disorders	as	well	as	their	subsequent	

impact	on	the	brain,	neurocognition,	health,	and	mental	health	over	the	course	adolescence	

and	into	early	adulthood	and	characterizing	normative	developmental	trajectories	and	

individual	differences	in	these.	More	broadly,	a	large	epidemiologically	informed	

longitudinal	study	beginning	in	childhood	and	continuing	on	through	early	adulthood	will	

provide	a	wealth	of	unique	data	on	normative	development,	as	well	as	environmental	and	

biological	factors	associated	with	variation	in	developmental	trajectories.	This	broader	

perspective	has	led	to	the	involvement	of	multiple	NIH	Institutes	that	are	stakeholders	in	

the	range	of	health	outcomes	targeted	in	the	ABCD	design.	(Information	regarding	funding	

agencies,	recruitment	sites,	investigators,	and	project	organization	can	be	obtained	at	

https://abcdstudy.org).	

The	ABCD	Study	primary	aims	are	given	in	the	Supplementary	Materials	(SM)	Section	S.1.	

Briefly,	these	include	development	of	national	standards	for	normal	brain	development,	

estimation	of	individual	developmental	trajectories	of	mental	and	physical	health	and	

substance	use	and	their	inter-relationships,	and	assessment	of	the	genetic	and	

environmental	factors	impacting	these	trajectories.	Below,	we	describe	the	study	design	

and	outline	analytic	strategies	to	address	the	primary	study	aims,	including	worked	



examples,	with	emphasis	on	approaches	that	incorporate	relevant	aspects	of	study	design.	

We	emphasize	impact	of	sample	size	on	the	precision	of	effect	size	estimates	and	

thoughtful	control	of	covariates	in	the	context	of	the	large-scale	population	neuroscience	

data	produced	by	the	ABCD	Study.	

2.0 Study	Design	

The	ABCD	Study	is	a	prospective	longitudinal	cohort	study	of	US	children	born	between	

2006-2008.	A	total	cohort	of	𝑛 =	11,878	children	aged	9-10	years	at	baseline	(and	their	

parents/guardians)	was	recruited	at	22	sites	(with	one	site	no	longer	active)	and	are	being	

followed	for	at	least	ten	years.	Eligible	children	were	recruited	from	the	household	

populations	in	defined	catchment	areas	for	each	of	the	study	sites	during	the	roughly	two-

year	period	beginning	September	2016	and	ending	in	October	2018.	

Within	study	sites,	consenting	parents	and	assenting	children	were	primarily	recruited	

through	a	probability	sample	of	public	and	private	schools	augmented	to	a	smaller	extent	

by	special	recruitment	through	summer	camp	programs	and	community	volunteers.	ABCD	

employed	a	probability	sampling	strategy	to	identify	schools	within	the	catchment	areas	as	

the	primary	method	for	contacting	and	recruiting	eligible	children	and	their	parents.	This	

method	has	been	utilized	within	other	large	national	studies	(e.g.,	Monitoring	the	Future8;	

the	Add	Health	Study9;	the	National	Comorbidity	Replication-Adolescent	Supplement10;	

and	the	National	Education	Longitudinal	Studies11).	Twins	were	recruited	from	birth	

registries	(see12,13	for	participant	recruitment	details).	A	minority	of	participants	were	

recruited	through	non-school-based	community	outreach	and	word-of-mouth	referrals.	



Across	recruitment	sites,	inclusion	criteria	consisted	of	being	in	the	required	age	range	and	

able	to	provide	informed	consent	(parents)	and	assent	(child).	Exclusions	were	minimal	

and	were	limited	to	lack	of	English	language	proficiency	in	the	children,	the	presence	of	

severe	sensory,	intellectual,	medical	or	neurological	issues	that	would	impact	the	validity	of	

collected	data	or	the	child’s	ability	to	comply	with	the	protocol,	and	contraindications	to	

MRI	scanning.	Parents	must	be	fluent	in	either	English	or	Spanish.	

Measures	collected	in	the	ABCD	Study	include	a	neurocognitive	battery14,	mental	and	

physical	health	assessments15,	measures	of	culture	and	environment16,	biospecimens17,	

structural	and	functional	brain	imaging18,19,	geolocation-based	environmental	exposure	

data,	wearables	and	mobile	technology20,	and	whole	genome	genotyping21.	Many	of	these	

measures	are	collected	at	in-person	annual	visits,	with	brain	imaging	collected	at	baseline	

and	at	every	other	year	going	forward.	A	limited	number	of	assessments	are	collected	in	

semi-annual	telephone	interviews	between	in-person	visits.	Data	are	publicly	released	on	

an	annual	basis	through	the	NIMH	Data	Archive	(NDA,	https://nda.nih.gov/abcd).	Figure	1	

graphically	displays	the	measures	that	have	been	collected	as	part	of	the	ABCD	NDA	2.0.1	

Release.	Figure	2	depicts	the	planned	data	collection	and	release	schedule	over	the	initial	

10	years	of	the	study.	

ABCD	sample	demographics	(from	NDA	Release	2.0.1,	which	contains	data	from	𝑛 =	11,875	

subjects)	are	presented	in	Table	1,	along	with	a	comparison	to	the	corresponding	statistics	

from	the	American	Community	Survey	(ACS).	The	ACS	is	a	large	probability	sample	survey	

of	US	households	conducted	annually	by	the	US	Bureau	of	Census	and	provides	a	

benchmark	for	selected	demographic	and	socio-economic	characteristics	of	US	children	



aged	9-10	years.	The	2011-2015	ACS	Public	Use	Microsample	(PUMS)	file	provides	data	on	

over	8,000,000	sample	US	households.	Included	in	this	five-year	national	sample	of	

households	are	376,370	individual	observations	for	children	aged	9-10	and	their	

households.	With	some	minor	differences,	the	unweighted	distributions	for	the	ABCD	

baseline	sample	closely	match	the	ACS-based	national	estimates	for	demographic	

characteristics	including	age,	sex,	and	household	size.	This	outcome	can	be	attributed	in	

large	part	to	three	factors:	1)	the	inherent	demographic	diversity	across	the	ABCD	study	

sites;	2)	stratification	(by	race/ethnicity)	in	the	probability	sampling	of	schools	within	

sites;	and	3)	demographic	controls	employed	in	the	recruitment	by	site	teams.	Likewise,	

the	unweighted	percentages	of	ABCD	children	for	the	most	prevalent	race/ethnicity	

categories	are	an	approximate	match	to	the	ACS	estimates	for	US	children	age	9	and	10.	

Collectively,	children	of	Asian,	American	Indian/Alaska	Native	(AIAN)	and	Native	

Hawaiian/Pacific	Islander	(NHPI)	ancestry	are	under-represented	in	the	unweighted	ABCD	

data	(3.2%)	compared	to	ACS	national	estimates	(5.9%).	This	outcome,	which	primarily	

affects	ABCD’s	sample	of	Asian	children,	may	be	due	in	part	to	differences	in	how	the	

parent/caregiver	of	the	child	reports	multiple	race/ethnicity	ancestry	in	ABCD	and	the	ACS.	

A	feature	of	the	ABCD	design	that	deserves	attention	in	the	analysis	of	the	baseline	cohort	

data	is	the	special	oversample	of	twin	pairs	in	four	of	the	ABCD	sites.	Although	twins	were	

eligible	to	be	recruited	in	all	sites	that	used	the	school-based	recruitment	sampling	

methodology,	in	the	four	special	twin	sites	supplemental	samples	of	150-250	twin	pairs	per	

site	were	enrolled	in	ABCD	using	twins	selected	from	state	registries12.	These	special	

samples	of	twin	pairs	can	be	distinguished	in	the	final	baseline	cohort;	however,	the	study	

has	chosen	not	to	explicitly	segregate	these	twin	data	from	the	general	population	sample	



of	single	births	and	incidental	twins	recruited	through	the	school-based	sampling	protocol.	

The	data	provide	opportunities	to	assay	differences	between	twins	and	non-twins,	which	

potentially	limit	the	generalizability	of	genetically	informed	twin	analyses.	

3.0 Population	Inferences	

The	ABCD	recruitment	effort	worked	very	hard	to	maintain	a	nationally	distributed	set	of	

controls	on	the	age,	sex	and	race/ethnicity	of	the	children	in	the	study.	The	predominantly	

probability	sampling	methodology	for	recruiting	children	within	each	study	site	was	

intended	to	randomize	over	confounding	factors	that	were	not	explicitly	controlled	(or	

subsequently	reflected	in	the	propensity	weighting).	Nevertheless,	school	consent	and	

parental	consent	were	strong	forces	that	certainly	may	have	altered	the	effectiveness	of	the	

randomization	over	these	uncontrolled	confounders.	

The	purpose	of	the	propensity	weighting	described	below	is	to	control	for	specific	sources	

of	selection	bias	and	restore	unbiasedness	to	descriptive	and	analytical	estimates	of	the	

population	characteristics	and	relationships.	For	many	measures	of	substantive	interest,	

the	success	of	this	effort	will	never	be	fully	known	except	in	rare	cases	where	comparative	

national	benchmarks	exist	(e.g.	children’s	height)	from	administrative	records	or	very	large	

surveys	or	population	censuses.	The	first	step	in	benchmarking	the	ABCD	baseline	sample	

weights	to	population	estimates	from	the	ACS	sample	required	identification	of	a	key	set	of	

demographic	and	socio-economic	variables	for	the	children	and	their	households	that	are	

measured	in	both	the	ABCD	Study	and	in	the	ACS	household	interviews.	For	the	ABCD	

eligible	children,	the	common	variables	include	1)	age;	2)	sex;	and	3)	race/ethnicity.	For	

the	child’s	household,	additional	variables	include:	4)	family	income;	5)	family	type	



(married	parents,	single	parent);	6)	household	size	7)	parents’	work	force	status	

(modifying	family	type	effect	by	parent	employment	status);	8)	Census	Region.	

The	construction	of	the	propensity	weights	is	described	in	detail	in	Heeringa	and	Berglund	

(2020)22.	Briefly,	a	multiple	logistic	regression	model	was	fit	to	the	concatenated	ACS	and	

ABCD	data.	In	estimating	the	parameters	of	this	model,	each	case	in	the	concatenated	file	

receives	a	frequency	weight.	ACS	cases	are	assigned	their	population	weights	which	in	

aggregate	sum	to	an	average	estimate	of	the	US	population	of	children	age	9,	10	for	the	

period	2011-2015.	ABCD	cases	are	assigned	a	unit	weight.	Applying	the	frequency	weights	

in	the	estimation	of	the	model	ensures	that	the	corresponding	population	propensities	for	

the	ABCD	sample	cases	reflect	the	base	population	fraction	(approximately	0.00145)	as	

well	as	adjustments	for	the	individual	covariate	factors	in	the	model.	The	population	

weight	values	for	each	ABCD	case	are	then	obtained	by	taking	the	reciprocal	of	the	

predicted	propensity	for	the	case,	trimming	extreme	weights,	and	then	“raking”	the	

trimmed	initial	weights	to	exact	ACS	population	counts	for	the	marginal	categories	of	age,	

sex	at	birth,	and	race/ethnicity.	Note,	these	are	weights	for	the	baseline	samples;	weights	

reflecting	the	sample	composition	at	each	follow-up	will	also	be	developed	and	

disseminated	going	forward.	

Heeringa	and	Berglund	(2020)22	perform	comparative	regression	analyses	utilizing	the	

propensity	weights.	Although	it	is	important	not	to	over	generalize	from	a	small	set	of	

comparative	analyses	to	all	possible	analyses	of	the	ABCD	data,	the	results	described	there	

lead	to	several	recommendations	for	researchers	who	are	analyzing	the	ABCD	baseline	

data.	R	scripts	for	computing	the	ABCD	propensity	weights	and	for	applying	them	in	



analyses	are	available	at	https://github.com/ABCD-STUDY/abcd_acs_raked_propensity.	

The	propensity	weights	computed	as	described	here	are	available	in	the	NDA	Release	2.0.1	

data	and	in	DEAP.	

First,	unweighted	analysis	may	result	in	biased	estimates	of	descriptive	population	

statistics.	The	potential	for	bias	in	unweighted	estimates	from	the	ABCD	data	is	strongest	

when	the	variable	of	interest	is	highly	correlated	with	socio-economic	variables	including	

family	income,	family	type	and	parental	work	force	participation.	With	case-specific	

propensity	weights	assigned	to	each	subject,	weighted	estimates	and	standard	errors	of	

population	characteristics	or	parameters	in	population	models	can	be	computed	using	

survey	analysis	software	(such	as	the	survey	package23	in	R)	along	with	robust	standard	

errors	and	confidence	intervals	for	the	weighted	estimates24.	

Second,	for	regression	models	of	the	ABCD	baseline	data,	a	multi-level	specification	(e.g.,	

site,	family,	individual)	is	the	preferred	choice.	Presently,	there	is	no	empirical	evidence	

from	preliminary	comparative	analysis	trials	that	methods	for	multi-level	weighting25	will	

improve	the	accuracy	or	precision	of	the	model	fit,	although	additional	research	on	this	

topic	is	ongoing.	

Third,	comparative	analyses	of	descriptive	estimation	methods	presented	in	Heeringa	and	

Berglund	(2020)22	found	that,	properly	weighted,	results	for	the	pooled	general	population	

and	special	twin	samples	are	comparable	to	those	for	weighted	estimates	based	solely	on	

the	smaller	general	population	sample.	Likewise,	regression	analyses	based	on	the	pooled	

general	population	and	special	twin	samples	that	account	for	inter-familial	clustering	(e.g.,	

multi-level	models)	produce	similar	results	to	analyses	based	on	the	general	population	



sample	alone.	Nevertheless,	analysts	should	use	appropriate	caution	in	pooling	the	general	

population	and	special	twin	samples	for	analyses,	as	the	exchangeability	observed	in	the	

comparative	analyses	presented	in	Heeringa	and	Berglund	(2020)22	may	not	necessarily	

hold	in	general.	

As	an	applied	example,	weighted	and	unweighted	means	and	standard	errors	for	ABCD	

baseline	brain	morphometry	-	volumes	of	cortical	Desikan	parcels26	-	are	presented	in	

Table	2.	Missing	observations	were	first	imputed	using	the	R	library	mice27	before	applying	

weights	to	the	completed	sample.	Differences	between	unweighted	and	weighted	means	

are	quite	small	in	the	baseline	sample	in	this	case.	As	longitudinal	MRI	data	become	

available	in	ABCD	(starting	with	the	second	post-baseline	annual	follow-up	visit),	

population-valid	trajectories	of	brain-related	outcomes	will	also	be	computable	using	a	

similar	propensity	weighting	scheme.	

4.0 Hypothesis	Testing	and	Effect	Sizes	

The	right	way	to	evaluate	the	meaningfulness	of	research	findings	has	been	a	subject	of	

consistent	debate	throughout	the	history	of	statistics28.	Even	with	the	continued	efforts	to	

synthesize	systems	of	statistical	inference29,	the	resolution	of	this	issue	is	unlikely	to	abate	

any	time	soon.	Most	neuroscience	researchers	continue	to	work	within	the	context	of	the	

classical	frequentist	null-hypothesis	significance	testing	(NHST)	paradigm30,31,	although	

non-frequentist	approaches	(e.g.	Bayesian,	machine	learning	prediction32–34)	are	

increasingly	common.	Within	the	NHST	framework,	researchers	attempt	to	determine	

which	associations	are	likely	“non-null”,	or	more	generally,	which	associations	to	prioritize	

for	further	examination.	For	a	given	dataset,	this	begins	with	the	choice	of	a	statistical	



model	containing	parameters	encapsulating	the	association	of	interest,	and	along	with	a	

model	fitting	procedure	results	in	sample	estimates	of	the	association	parameters.	The	

NHST	p-value	“…is	the	probability	under	a	specified	statistical	model	that	a	statistical	

summary	of	the	data…would	be	equal	to	or	more	extreme	than	its	observed	value”35.	As	

indicated	in	this	definition,	the	p-value	depends	on	the	statistical	model,	with	different	

models	potentially	giving	very	different	p-values,	underlining	the	importance	of	carefully	

choosing	appropriate	statistical	models	and	evaluating	their	assumptions,	e.g.,	models	

which	properly	reflect	study	design	elements	such	as	nesting	of	observations	within	

subjects,	subjects	within	families,	and	families	within	sites.	

The	p-value	is	distributed	over	the	interval	[0,1],	uniformly	so	in	the	presence	of	a	true	null	

association.	Typically,	however,	a	dichotomous	decision	is	reported–should	the	null	

hypothesis	be	rejected?	The	standard	cutoff	of	p	≤ 0.05	is	commonly	used	to	guide	this	

decision.	The	utility	of	NHST	and	the	arbitrariness	of	the	cutoff	value	has	been	debated	

extensively35–37.	We	will	not	relitigate	these	issues	here.	We	will,	however,	attempt	to	

address	how	best	to	present	statistical	evidence	that	leverages	the	ABCD	Study’s	large	

sample	size,	population	sampling	frame,	and	rich	longitudinal	assessment	protocol	to	

enable	reliable	and	valid	insights	into	child	and	adolescent	neurodevelopment.	Key	

takeaways	include:	1)	the	impact	of	sample	size	on	statistical	power	and	precision	of	

estimates;	2)	reporting	the	magnitude	of	associations	in	addition	to	p-values;	and	3)	

thoughtful	control	of	potentially	confounding	factors.	We	cover	the	first	two	of	these	topics	

in	this	section	and	covariate	control	in	Section	5.	



4.1 Power	

Statistical	power	in	the	NHST	framework	is	defined	as	the	probability	of	rejecting	a	false	

null	hypothesis.	Power	is	determined	by	three	factors:	1)	the	significance	level	𝛼;	2)	the	

magnitude	of	the	population	parameter;	and	3)	the	accuracy	(precision	and	bias)	of	the	

model	estimates.	As	the	p-value	is	uniformly	distributed	on	the	interval	[0,1]	under	the	null	

hypothesis	and	a	well-calibrated	statistical	model38,	the	significance	level	𝛼	is	also	the	Type	

I	error	rate,	the	frequentist	probability	of	rejecting	a	true	null	hypothesis.	This	stands	in	

contrast	to	the	Type	II	error	rate,	or	the	probability	of	failure	to	reject	a	false	null	

hypothesis	denoted	by	𝛽	(with	power	= 1 − 𝛽).	There	is	always	a	push-pull	relationship	

regarding	the	relative	seriousness	of	each	error	type.	Neuroscientific	and	genomic	

researchers	spend	substantial	effort	attempting	to	mitigate	Type	I	error	rate	from	high-

dimensional	data	(e.g.,	via	image-wide	multiple	comparison	corrections39).	Increasing	

power	while	maintaining	a	specified	Type	I	error	rate	depends	largely	on	obtaining	more	

precise	association	parameter	estimates	from	improved	study	designs,	more	efficient	

statistical	methods,	and,	importantly,	increasing	sample	size1,3,40.	

The	ABCD	Study	has	a	large	sample	compared	to	typical	neurodevelopmental	studies,	so	

much	so	that	one	might	expect	even	very	small	associations	to	come	out	statistically	

significant.	Figure	3	displays	power	curves	as	a	function	of	sample	size	for	different	values	

of	|𝑟|.	The	dashed	line	in	Figure	3	indicates	the	full	ABCD	baseline	sample	size	of	𝑛 =

11878.	As	can	be	seen,	Pearson	correlations	|𝑟| = 0.04	and	above	have	power	> 0.99	at	

𝛼 = 0.05.	Simply	rejecting	a	null	hypothesis	without	reporting	on	other	aspects	of	the	study	

design	and	statistical	analyses	(including	discussion	of	plausible	alternative	explanatory	



models	and	threats	to	validity),	as	well	as	the	observed	magnitude	of	associations,	is	

uninformative,	perhaps	particularly	so	in	the	context	of	very	well-powered	studies41.		

Note,	however,	in	our	experience,	not	all	associations	in	the	ABCD	Study	are	guaranteed	to	

have	small	p-values.	For	example,	a	recent	study	attempting	to	replicate	the	often-cited	

bilingual	executive	function	advantage	failed	to	find	evidence	for	the	advantage	in	the	first	

data	release	(NDA	1.0)	of	the	ABCD	Study	(𝑛 = 4524)42,	and	indeed	despite	the	large	

sample	most	of	the	reported	p-values	did	not	pass	the	significance	threshold.	Thus,	high	

power	does	not	guarantee	statistical	significance	for	all	estimated	associations,	although	it	

is	quite	likely	in	investigations	of	the	full	ABCD	sample	as	the	effect	size	deviates	from	zero.	

4.2 Precision	

The	precision	of	a	parameter	estimate	is	its	expected	closeness	to	a	corresponding	

population	parameter	from	a	given	statistical	model43.	Many	factors	impact	precision	of	

parameter	estimates,	e.g.,	the	magnitude	of	measurement	error	and	the	efficiency	of	the	

study	design	and	statistical	analysis	(Rothman	et	al.2008,	Chs.	10-11)3.	Crucially,	precision	

is	dependent	on	the	sample	size	𝑛	—	the	standard	error	decreases	at	the	rate	of	√𝑛.	

Precision	is	closely	related	to	power	and	high	levels	of	precision	are	especially	important	to	

accurately	estimate	small	associations1.	In	fact,	underpowered	studies	possess	non-

negligible	probability	of	obtaining	“significant”	associations	in	the	wrong	direction44.	

Measurement	error	and	other	sources	of	uncontrolled	random	variation	that	decrease	

precision	will	also	tend	to	attenuate	the	magnitude	of	associations	and	hence	create	a	

downward	bias	in	effect	size	estimates3,45.	



Crucially,	increased	precision	plays	an	important	role	in	mitigating	the	impact	of	

publication	bias1.	For	example,	suppose	the	strength	of	an	association	is	quantified	by	an	

absolute	Pearson	correlation	|𝑟|.	Assuming	bivariate	normality,	the	interplay	of	precision	

and	publication	bias	can	be	quantified	by	a	simple	model	involving	only	the	true	underlying	

correlation	𝜌,	the	study	sample	size	𝑛,	and	the	probability	of	publication	𝑞!(|𝑟|)	(e.g.,	

𝑞!(|𝑟|)	could	be	the	p-value	being	below	a	given	threshold;	see	SM	Section	S.2).	

Figure	4	(left	panel)	displays	this	phenomenon	in	a	simulated	example	of	estimated	

absolute	Pearson	correlations	using	bivariate	normal	samples	where	the	true	correlation	is	

𝜌 = 0.10.	Five	thousand	datasets	were	simulated	for	each	of	a	range	of	sample	sizes,	from	

𝑛 = 10	to	𝑛 = 10000.	Red	lines	mark	the	significance	threshold	for	a	Type	I	error	rate	of	

𝛼 = 0.05,	obtained	from	a	normal	approximation	after	a	Fisher	𝑧-transformation	utilizing	

approximate	standard	errors	1/(𝑛 − 3).	For	a	sample	size	of	𝑛 = 10,	only	about	5.8%	of	

samples	have	an	estimated	Pearson	correlation	exceeding	this	threshold,	whereas	for	𝑛 =

10000,	all	estimated	correlations	exceed	the	significance	threshold	in	the	5000	simulated	

datasets.	(Note,	this	essentially	recapitulates	Figure	3.)	The	middle	panel	of	Figure	4	

displays	the	expectation	of	|𝑟|	vs.	𝑛	under	an	extreme	selection	model	whereby	only	those	

correlations	significant	at	𝛼 = 0.05	are	published	when	the	true	population	correlation	is	

𝜌 = 0.10.	For	𝑛 = 10,	the	bias	is	severe	(expectation	of	0.71	vs.	true	value	of	𝜌 = 0.10),	

whereas	by	𝑛 = 1000	and	larger	the	bias	becomes	negligible.	As	a	comparison,	we	display	

the	results	of	a	literature	search	modified	from	Feng	et	al.	(2020),	which	plots	821	brain-

symptom	absolute	correlations	derived	from	120	publications	as	a	function	of	study	

sample	size	(Figure	4	right	panel).	The	resulting	distribution	appears	qualitatively	quite	

similar	to	the	expectation	of	|𝑟|	in	the	presence	of	publication	bias	(middle	panel).	Thus,	to	



the	extent	that	publication	of	results	depends	on	p-values,	the	bias	in	the	size	of	published	

associations	will	be	reduced	in	larger	samples	as	compared	to	smaller	samples.		

4.3 Effect	Sizes	

An	effect	size	is	“…a	population	parameter	(estimated	in	a	sample)	encapsulating	the	

practical	or	clinical	importance	of	a	phenomenon	under	study’’46.	As	most	research	utilizing	

the	ABCD	Study	data	will	not	have	a	direct	clinical	focus,	determining	what	is	meant	by	

“practical	importance”	will	not	always	be	straightforward,	as	we	discuss	below.	Also	note,	

we	are	careful	to	distinguish	effects	(counterfactual,	or	causal,	relationships)	from	

associations,	which	may	be	impacted	by	many	factors,	including	selection	bias,	model	

misspecification,	attenuation	due	to	measurement	error,	presence	of	confounding	factors,	

and/or	covariate	overcontrol3,47.	To	follow	common	usage	in	many	treatments	on	the	topic,	

here	we	use	the	term	“effect	size”	rather	than	“association	size,”	but	we	do	not	intend	to	

imply	that	unbiased	causal	effects	are	necessarily	obtainable.	We	discuss	control	of	

confounding	factors	in	the	context	of	the	ABCD	Study	in	Section	5.	

Effect	sizes	quantify	relationships	between	two	or	more	(sets	of)	variables,	e.g.,	correlation	

coefficients,	proportion	of	variance	explained	(𝑅"),	Cohen’s	𝑑,	relative	risk,	number	needed	

to	treat,	and	so	forth43,48,	with	one	variable	often	thought	of	as	independent	(exposure)	and	

the	other	dependent	(outcome)3.	Effect	sizes	are	independent	of	sample	size,	e.g.,	t-tests	and	

p-values	are	not	effect	sizes;	however,	the	precision	of	effect	size	estimators	depend	on	

sample	size	as	described	above.	Consensus	best	practice	recommendations	are	that	effect	

size	point	estimates	be	accompanied	by	intervals	to	illustrate	the	precision	of	the	estimate	

and	the	consequent	range	of	plausible	values	indicated	by	the	data35.	Table	3	presents	a	

number	of	commonly	used	effect	size	metrics50,51.	We	wish	to	avoid	being	overly	



prescriptive	for	which	of	these	effect	sizes	to	employ	in	ABCD	applications,	as	researchers	

should	think	carefully	about	the	intended	use	of	their	analyses	and	pick	an	effect	size	

metric	that	addresses	their	particular	research	question.	

4.4 Small	Effects	

As	much	as	the	choice	of	which	effect	size	statistic	to	report	is	driven	by	context,	the	

interpretation	of	the	practical	utility	of	the	observed	effect	size	is	even	more	so.	While	

small	p-values	do	not	imply	that	reported	effects	are	inherently	substantive,	“small”	effect	

sizes	might	have	practical	or	even	clinical	significance	in	the	right	context48.		

We	may	find,	as	has	been	true	in	the	majority	of	published	results	so	far,	that	most	effect	

sizes	reported	in	analysis	of	ABCD	data	will	be	small	by	traditional	standards.	ABCD-

centered	reasons	why	this	may	be	true	include:	1)	a	broad	population-based	sample	often	

exhibits	smaller	effects	than	narrowly-ascertained	clinical	samples,	perhaps	due	to	

ascertainment	effects	in	the	later3,5,52;	2)	subjects	are	still	young	and	certain	associations,	

e.g.,	with	psychopathology,	may	develop	more	strongly	as	they	progress	through	

adolescence	and	early	adulthood53;	3)	the	large	sample	size	of	ABCD	increases	the	power	of	

NHST	and	the	precision	of	effect	size	estimates	and	hence	small	but	non-null	effects	more	

easily	pass	usual	significance	thresholds	compared	to	estimates	from	smaller	studies.	

As	described	above,	known	problems	of	publication	bias	and	incentives	for	researchers	to	

find	significant	associations1,54	combined	with	the	predominantly	small	sample	sizes	of	

most	prior	neurodevelopmental	studies	lead	us	to	expect	that	true	brain-behavior	effect	

sizes	are	smaller	than	have	been	described	in	the	past55,56	and	attempts	to	replicate	the	

existing	literature	using	ABCD	data	will	be	more	likely	than	not	result	in	effect	size	



estimates	smaller	than	prior	published	effects.	Speaking	on	publication	bias	and	other	

issues,	Ioannidis	(2005)2	argued	that	most	claimed	research	findings	in	the	scientific	

literature	are	actually	false.	Although	this	is	disputed57,	some	analyses	of	existing	literature	

provide	support	for	the	possibility58.	We	believe	a	likely	scenario	is	that	many	published	

neurodevelopmental	associations	are	not	necessarily	false	positives	but	do,	however,	have	

vastly	inflated	effect	sizes	(i.e.,	the	so-called	“winners	curse”59).	

Reviews	of	the	literature	suggest	that	these	issues	are	pervasive.	For	example,	in	a	recent	

metanalysis	of	708	individual	differences	studies	in	psychology,	Gignac	and	Szodorai60	

found	that	correlations	of	𝑟 = 0.11,	0.19,	and	0.29	were	at	the	25th,	50th,	and	75th	

percentiles,	respectively.	Similarly,	in	a	metanalysis	of	mostly	treatment/therapy	studies,	

Hemphill61	found	that	two-thirds	of	correlations	were	below	𝑟 = 0.3.	Thus,	according	to	

Cohen’s	standards,	the	majority	of	studies	had	reported	effect	sizes	that	are	below	medium,	

and	a	good	proportion	are	small	(below	𝑟 = 0.1).	As	such,	power	is	a	major	problem	in	the	

field	and	is,	on	average,	very	low58.	This	is	a	particularly	acute	problem	for	human	

neuroimaging,	where	the	average	power	has	been	estimated	to	be	0.08,	with	small-sample	

studies	still	the	current	norm	rather	than	the	exception1.	Thus,	the	extant	literature	might	

be	represented	by	effect	sizes	that	are	already	small,	but	also	inflated	relative	to	the	true	

effect	in	the	population	because	of	known	“winners	curse”,	iteratively	searching	for	and	

selective	reporting	of	significant	results	(p-hacking),	and	publication	bias.	

In	addition	to	the	ABCD-specific	factors	mentioned	above,	observed	effect	size	estimates	

may	be	small	for	many	other	reasons,	not	necessarily	related	to	the	magnitude	of	the	

underlying	mechanistic	relationships.	These	include:	1)	measures	that	may	be	only	weakly	



correlated	with	the	behaviors	and	neurobiology	of	interest;	2)	measures	with	low	test-

retest	reliability	and/or	high	measurement	error,	which	will	attenuate	effects45;	3)	

measures	designed	to	assess	within-person	effects,	with	poor	between-person	sensitivity;	

4)	effects	that	are	large	within	a	(possibly	latent)	sub-group,	but	which	wash-out	across	the	

whole	sample.	Many	of	these	factors	are	germane	to	MRI	research,	which	is	known	to	have	

high	measurement	noise	and	modest	reliability,	is	susceptible	to	movement	artifacts	

(especially	in	pediatric	populations),	and	is	only	an	indirect	measure	of	structural	and	

functional	indices	that	might	be	better	predictors	of	behavior	(e.g.,	BOLD	fMRI	measures	

blood	flow	and	not	neuronal	activity;	diffusion-weighted	MRI	measures	water	diffusion	and	

not	axon	integrity	or	myelination).	

In	some	contexts,	e.g.,	clinical	prediction	for	individualized	treatments,	small	effects	may	

not	be	meaningful,	and	this	should	be	acknowledged,	even	if	they	are	statistically	

significant.	This	will	likely	be	the	outcome	of	some	proportion	of	research	conducted	on	the	

ABCD	data.	The	upside	of	this	outcome	is	that	in	smaller	samples	these	effects	would	have	

ended	up	in	the	“file	drawer”	or	estimated	with	exaggerated	magnitude.	Thus,	the	literature	

will	now	be	able	to	consider	a	broader	range	of	results	on	particular	topics	of	interest,	with	

increased	confidence	in	the	likely	true	size	of	relationships	and	with	reduced	publication	

biases.	The	prominent	impact	of	this	bias	in	small-sample	research	is	apparent	in	the	

simple	simulation	presented	above	(and	analytically	in	Section	S.2)	but	is	all	but	eliminated	

for	large	samples,	at	least	when	the	number	of	hypothesis	tests	is	not	large	compared	to	the	

sample	size.	



Finally,	we	must	acknowledge	that	even	if	effects	are	small	by	usual	standards,	they	should	

not	be	inherently	dismissed.	Small	effects	may	still	be	important	for	deciding	where	to	

focus	attention	to	understand	brain-behavior	mechanisms.	This	has	been	the	case	in	

genomics	research	where	associations	of	individual	loci	are	tiny	for	most	complex	traits	

but	can	still	be	useful	for	understanding	the	molecular	mechanisms	of	behavior	and	

identifying	potential	drug	targets	for	disorders62.	Moreover,	many	imperfectly	correlated	

small	effects	can	cumulatively	add	up	to	large	effects6,55,56,63.	Thus,	an	association	can	be	

“practically”	important	even	if	its	effect	size	is	small	by	traditional	standards.	

Funder	and	Ozer64	have	recently	provided	guidelines	for	reporting	effect	sizes	in	terms	that	

are	meaningful	in	context.	For	example,	even	small	effects,	they	argued,	are	potentially	

important	if	they	systematically	accrue	over	time.	They	reference	a	classic	example	of	the	

potential	for	accumulative	consequences	of	individual	behaviors	over	the	long	run.	In	this	

example,	Abelson65	pointed	to	the	correlation	between	success	on	a	single	at-bat	in	

baseball	to	overall	batting	average.	The	effect	size	is	surprisingly	small	—	𝑟 = .056.	

However,	Abelson	argued	that	systematic	differences	in	single	events	are	nontrivial	

predictors	of	future	events	because	the	process	through	which	variables	operate	in	the	real	

world	is	important.	Thus,	he	argued,	small	effect	sizes	are	meaningful	if	the	degree	of	

potential	cumulation	is	substantial.	

In	the	context	of	the	longitudinal	ABCD	Study,	in	which	many	research	questions	will	be	

addressed	in	the	context	of	individual	differences,	this	can	be	potentially	important.	As	

Funder	and	Ozer	point	out,	“every	social	encounter,	behavior,	reaction,	and	feeling	a	person	

has	could	be	considered	a	psychological	’at	bat’”	(p.	161)64.	Effects	of	this	type,	which	may	



stem	from	stable	traits	of	individuals,	can	have	consequences	that	can	add	up,	and	thus	

small	effect	sizes,	interpreted	in	the	right	context,	can	be	meaningful.	

4.5 Example:	Effect	Size	Estimates	

Here	we	illustrate	how	the	choice	of	effect	size,	and	the	interpretation	of	its	substantive	

effect,	must	be	made	in	the	context	of	the	research	question.		For	example,	difference-of-

means	effect	sizes	such	as	Cohen’s	𝑑	and	related	metrics	(see	Table	3)	assess	the	

magnitude	of	mean	differences	between	two	conditions	or	groups.	But	what	is	not	often	

appreciated	is	that	Cohen’s	𝑑	is	insensitive	to	base-rate	differences	in	proportion	of	

subjects	in	each	group66.	Thus,	Cohen’s	𝑑	might	be	an	appropriate	metric	for	assessing	the	

potential	counterfactual	impact	of	an	exposure	in	a	given	subject	(assuming	control	for	

confounding	factors)	but	may	not	be	appropriate	for	assessing	the	public	health	impact	of	

modifying	an	exposure	on	population	incidence	of	a	disorder.	Conversely,	base-rate-

sensitive	effect	size	metrics	take	into	account	the	difficulty	of	differentiating	phenomena	in	

rare	events.	If	the	goal	is	to	assess	the	impact	of	an	exposure	on	a	population,	is	arguable	

that	researchers	should	opt	for	an	effect	size	metric	that	takes	the	sample	base	rate	into	

account.	For	example,	the	point-biserial	correlation66	(Table	3)	is	a	similar	metric	that,	

unlike	d,	is	sensitive	to	sample	base	rates.	

To	illustrate	this,	we	used	Cohen’s	𝑑	and	point-biserial	𝑟#$	to	estimate	the	effect	size	of	a	

dichotomous	“exposure”	index:	severe	obesity	(equal	to	1	if	the	child’s	body	mass	index	

BMI	≥ 30	and	equal	to	zero	otherwise)	and	a	continuous	brain	“outcome”:	restriction	

spectrum	imaging	component	(N0),	a	measure	of	cellularity,	in	the	Nucleus	Accumbens	

(NAcc).	Recent	work	has	highlighted	a	potential	role	of	neuroinflammation	in	the	NAcc	in	

animal	models	of	diet-induced	obesity67.	We	included	baseline	data	from	subjects	without	



missing	BMI	and	NAcc	N0	data,	also	excluding	5	subjects	with	NAcc	N0	values	< 0	(leaving	

𝑁 = 10659	subjects,	of	which	184	subjects	were	severely	obese,	or	1.7%).	As	can	be	seen	in	

Figure	5	(upper	panels),	NAcc	N0	values	are	heavy	tailed.	We	thus	use	a	bootstrap	

hypothesis	testing	procedure	to	obtain	quantiles	of	𝑑	and	𝑟#$68.	To	account	for	nesting	of	

subjects	within	families,	at	each	iteration	of	the	bootstrap	one	member	of	each	family	was	

first	selected	at	random,	and	these	subjects	(along	with	all	singletons)	were	sampled	with	

replacement	10000	times.	Figure	5	(lower	panels)	presents	the	bootstrap	p-value	plots	for	

different	null	hypotheses3.	The	bootstrap	median	𝑑 = 0.801	(95%	CI:	[0.588,0.907])	and	

median	𝑟#$	= 0.106	[0.081,0.127].	Thus,	while	in	terms	of	𝑑	the	effect	might	be	considered	

“large”,	𝑟#$	corresponds	to	a	variance	explained	of	roughly	1%	and	hence	would	be	

considered	“small”	by	many	researchers.	

So,	what	effect	size	should	the	researcher	report,	and	which	should	be	emphasized	in	the	

interpretation?	Our	general	guidance	would	be	to	carefully	consider	the	answer	in	the	

context	of	the	research	question.	Thus,	perhaps	both	could	be	reported,	but	if	the	public	

health	impact	of	an	intervention	is	considered	the	𝑟#$	might	be	more	strongly	focused	on	in	

the	discussion	of	results.	

Other	factors	could	affect	the	calculation	of	effect	sizes.	For	example,	to	explore	the	impact	

of	ABCD	sample	differences	from	the	ACS	data	on	effect	size	estimates,	we	re-ran	the	

analyses	using	a	weighted	bootstrap,	with	probability	of	sampling	proportional	to	the	

raked	propensity	weights	describes	in	Section	3.	The	weighted	bootstrap	yielded	median	

𝑑%& = 0.776	[0.609,0.951]	and	median	𝑟#$,%& = 0.107	[0.083,0.132]).	The	median	estimates	

are	thus	little	changed	from	the	unweighted	bootstrap	medians,	though	the	95%	



confidence	intervals	are	wider	as	expected	due	to	the	increased	variability	in	weighted	

compared	to	unweighted	estimates24.	

Finally,	caution	is	warranted	in	interpreting	these	results	as	“effect	sizes,”	as	the	causal	

relationship	could	be	from	obesity	to	NAcc	N0,	from	NAcc	N0	to	obesity,	bidirectional,	or	

even	non-existent.	We	also	do	not	adjust	for	potential	confounding	factors	or	their	proxies	

in	this	analysis3.	In	light	of	this,	it	would	be	more	appropriate	to	call	𝑑	and	𝑟#$	as	computed	

here	“association	sizes”.	We	will	revisit	this	example	in	the	context	of	direction	of	causality	

models	(from	twin	data)	and	control	of	confounding	factors	(propensity	matching).	In	

general,	though,	our	recommendation	regarding	effect	sizes	is	to	appreciate	the	nuance	

inherent	in	reporting	statistical	results,	to	report	them	comprehensively	and	with	

confidence	estimates,	and	to	consider	their	substantive	significance	with	clear	connection	

to	the	central	research	questions	addressed	in	the	study.	

5.0 Control	of	Confounding	Variables	

Random	variation	impacts	statistical	inferences	via	reduced	precision	and	attenuation	of	

associations.	Systematic	sources	of	variation	can	also	threaten	the	validity	of	inferences	

regarding	effects	of	interest	(Rothman	et	al	2008,	Ch.	93).	For	example,	while	the	ABCD	

Study	endeavored	to	collect	a	representative	sample	of	US	children	born	between	2006-

2008,	there	are	departures	from	the	ACS	on	some	key	sociodemographic	factors	due	to	self-

selection	of	subjects	(Table	1).	Using	the	propensity	weighting	described	in	Section	2,	we	

can	adjust	the	data	to	more	closely	resemble	that	of	the	ACS	in	terms	of	sociodemographic	

factors	assessed	in	both	samples,	but	this	does	not	guarantee	similarity	between	the	ABCD	

and	ACS	samples	in	terms	of	effect	size	estimates.	



An	important	challenge	to	the	validity	of	effect	estimates	from	the	ABCD	Study	(and	from	

any	observational	study)	is	the	likely	presence	of	confounding	variables	for	observed	

associations.	Necessary	(but	not	sufficient)	conditions	for	a	variable	to	confound	an	

observed	association	between	an	independent	variable	(IV)	and	a	dependent	variable	(DV)	

are	that	the	factor	is	associated	with	both	the	exposure	and	the	outcome	in	the	population,	

but	not	causally	affected	by	either69	(if	a	variable	is	causally	downstream	of	the	IV	or	the	

DV	or	both,	it	may	be	a	collider	or	a	mediator3).	Conditioning	on	confounders	(or	their	

proxies)	in	regression	analyses	will	tend	to	reduce	bias	in	effect	size	estimates,	whereas	

conditioning	on	colliders	or	mediators	(or	their	proxies)	will	tend	to	increase	bias.	To	make	

matters	more	difficult,	assessed	variables	can	be	proxies	for	both	confounding	factors	and	

mediators	or	colliders	simultaneously,	in	which	case	it	is	not	clear	whether	conditioning	

will	improve	or	worsen	bias	in	effect	size	estimates.	We	thus	recommend	that	investigators	

using	ABCD	data	think	carefully	about	challenges	to	estimating	effects	of	exposures	and	

perform	sensitivity	analyses	that	examine	the	impact	of	including/excluding	covariates	on	

associations.	Below,	we	discuss	these	topics	more	thoroughly	in	the	context	of	conditioning	

on	covariates	in	regression	models.	

5.1 Conditioning	on	Covariates	

Although	the	inclusion	of	covariates	in	statistical	models	is	a	widespread	practice,	

determining	which	covariates	to	include	is	necessarily	complex.	Datasets	with	a	rich	set	of	

demographic	and	other	variables	lend	themselves	to	the	inclusion	of	any	number	of	

covariates.	In	many	respects,	this	can	be	seen	as	a	strength	of	the	ABCD	Study,	but	this	can	

also	complicate	the	interpretation	of	findings	when	research	groups	adopt	different	

strategies	for	what	covariates	to	include	in	their	models.	For	instance,	a	recent	



comprehensive	review	of	neuroimaging	studies70	found	that	the	number	of	covariates	used	

in	models	ranged	from	0	to	14,	with	37	different	sets	of	covariates	across	the	68	models	

reviewed.	Moreover,	they	found	that	brain-behavior	associations	varied	substantially	as	a	

function	of	which	covariates	were	included	in	models:	some	sets	of	covariates	influenced	

observed	associations	only	a	little,	whereas	others	resulted	in	dramatically	different	

patterns	of	results	compared	to	models	with	no	covariates.	Such	findings	highlight	the	need	

for	thoughtful	use	of	covariates	given	that	their	inconsistent	use	can	preclude	meaningful	

cross-study	comparisons.	This	issue	is	likely	to	be	especially	amplified	in	publicly	available	

datasets	like	ABCD,	where	groups	with	varying	data	practices	analyze	the	same	data.	

In	what	follows,	we	begin	with	a	description	of	the	intended	use	of	covariates,	including	

common	misconceptions	surrounding	their	use.	We	then	provide	some	general	

recommendations	for	the	use	of	covariates	in	the	ABCD	Study	data.	We	end	with	a	worked	

example	of	how	one	might	approach	the	use	of	covariates	in	their	models.	This	example	

will	focus	on	the	associations	between	parental	history	of	alcohol	problems	and	child	

psychopathology,	an	important	substantive	question	that	has	received	attention	in	the	

literature	(e.g.,	Hesselbrock	&	Hesselbrock,	199271)	and	is	examinable	in	the	ABCD	data.	

This	use	of	covariates,	and	which	covariates	to	use,	presents	with	an	analytical	conundrum.	

The	advantages	and	disadvantages	of	covariate	inclusion	in	statistical	models	has	been	

widely	debated72,73	and	reviewed	elsewhere74–76.	Generally,	covariates	are	used	in	an	

attempt	to	yield	more	“accurate”	(i.e.,	purified76)	estimates	of	the	relationships	among	the	

IVs	and	DV,	thereby	revealing	their	“true”	associations	(Atinc	et	al.,	2012).	Under	this	

assumption,	the	inclusion	of	covariates	implicitly	assumes	that	the	covariates	are	somehow	

contaminating	(i.e.,	confounding)	the	measurement	of	the	variables	of	interest.	Not	



controlling	for	covariates,	as	such,	presumably	distorts	observed	associations	among	the	

IVs	and	DV72,76.	Note	that	we	use	“somehow”	to	emphasize	frequent	researcher	agnosticism	

regarding	the	specific	role	of	the	covariates	included	in	the	model,	perhaps	due	to	a	general	

lack	of	commonly-accepted	and/or	well-justified	causal	models.	

Figure	6A	displays	three	possible	instances	of	measurement	contamination.	Measurement	

contamination	ostensibly	occurs	when	a	covariate	influences	the	observed	variables	(x	and	

y	in	Figure	6A).	Importantly,	a	major	assumption	surrounding	the	presumption	of	

measurement	contamination	is	that	the	covariate	does	not	affect	the	underlying	constructs	

(X	and	Y	in	Figure	6A),	only	their	measures.	Removing	the	influence	of	covariates	by	

controlling	for	them	presumes	that	absent	such	control,	the	association	between	the	IVs	

and	DV	is	somehow	artifactual.	Nevertheless,	there	are	a	number	of	other	plausible	models	

under	which	covariates,	IVs,	and	the	DV	relate	to	one	another	(see	Meehl,	197172,	for	a	

thorough	discussion).	

Figures	6B	and	6C	display	two	such	situations,	spuriousness	and	mediation.	Under	a	

spuriousness	model,	the	IV	(X)	and	DV	(Y)	are	not	directly	causally	associated	but	are	both	

caused	by	the	covariate.	Therefore,	any	observed	association	between	the	IV	and	DV	is	

spurious	given	that	it	is	caused	by	the	covariate.	Under	a	mediation	model,	the	IV	(X)	and	

DV	(Y)	are	statistically	associated	only	through	the	covariate.	Spuriousness	and	mediation	

models	are	statistically	indistinguishable,	and	under	both	models,	controlling	for	the	

covariate	results	in	a	null	association	between	the	IV	and	DV.	In	either	case,	including	

covariates	can	effectively	remove	effects	of	interest	from	the	model.	At	best,	this	practice	

obscures	rather	than	purifies	relationships	among	our	variables	of	interest.	At	worst,	this	



practice	can	render	incorrect	interpretations	of	the	true	model.	Rather	than	suggesting	that	

covariates	should	be	avoided	altogether,	we	view	them	as	having	an	important	role	in	

testing	competing	hypotheses.	In	what	follows,	we	offer	several	general	considerations	

while	determining	which	covariates	to	use	in	working	with	the	ABCD	data.	The	worked	

example	we	provide	later	will	describe	a	hypothetical	data	analytic	scenario	in	which	the	

researchers	works	through	the	following	considerations.	We	direct	interested	readers	to	

the	following	more	thorough	treatments	of	covariate	use	in	statistical	modeling74–76.	

What	is	the	role	of	the	covariate?	What	is	the	theoretical	model?	Could	the	exclusion	and	

inclusion	of	the	covariate	inform	the	theoretical	model?	The	practice	of	simply	explicitly	

specifying	the	role	of	the	covariate	in	the	model,	and	even	more	specifically	its	

hypothesized	role	in	the	IV-DV	associations,	helps	avoid	including	covariates	in	the	model	

when	doing	so	is	poorly	justified.	Moreover,	it	encourages	thoughtful	hypothesis	testing.	

Ideally,	explicit	justification	of	the	inclusion	of	each	covariate	in	the	model	should	be	

included	in	the	reporting	of	our	results.	Better	yet,	as	opposed	to	treating	control	variables	

as	nuisance	variables	in	your	models,	a	more	ideal	model	would	include	covariates	in	

hypotheses	(Breaugh	et	al.,	2016).	As	opposed	to	simply	treating	an	indicator	as	a	covariate	

whose	influence	on	the	IVs	and	DVs	is	generally	overlooked,	we	also	encourage	considering	

the	extent	to	which	the	exclusion	and	inclusion	of	the	covariate	could	inform	the	theoretical	

model.	

How	do	my	models	differ	with	and	without	covariates?	We	suggest	running	models	

with	and	without	covariates	and	comparing	their	results.	This	practice	encourages	

researchers	to	better	consider	the	effect	of	covariates	on	the	IV	and	DVs.	At	the	same	time,	



engaging	in	multiple	testing	can	increase	Type	I	error	rates.	Regarding	our	suggestion,	we	

encourage	a	shift	away	from	comparing	models	on	the	basis	of	statistical	significance	(p-

values),	and	instead	encourage	researchers	to	compare	effect	sizes	of	the	predictor	of	

interest	in	models	with	and	without	the	covariates.	The	focus	on	effect	size	as	opposed	to	

statistical	significance	is	important	given	that	including	many	covariates	in	the	statistical	

model	reduces	degrees	of	freedom,	in	turn	increasing	standard	errors	and	decreasing	

statistical	power	for	any	given	IV.	

If	the	effect	sizes	for	the	IV	and	DV	do	not	differ	as	a	function	of	the	inclusion	of	the	

covariate,	the	researcher	might	consider	dropping	it	from	the	model,	but	noting	this	

information	somewhere	in	the	text.	Becker	(2005)	offers	more	suggestions	regarding	what	

to	do	when	results	from	models	with	and	without	covariates	differ	(see	also	Becker	et	al.,	

201675).	Additionally,	should	you	choose	to	adopt	models	with	covariates	included,	we	

recommend	placing	analyses	from	models	without	covariates	in	an	appendix	or	in	the	

supplemental	materials.	Such	a	practice	will	aid	in	comparison	of	results	across	studies,	

particularly	across	studies	with	different	sets	of	covariates	in	the	models.	

5.2 Example:	Conditioning	on	Covariates	

A	hypothetical	researcher	is	interested	in	the	association	between	family	history	of	alcohol	

problems	and	child	psychopathology.	The	ABCD	dataset	contains	a	rich	assessment	of	

family	history	of	psychiatric	problems	(e.g.,	alcohol	problems,	drug	problems,	trouble	with	

the	law,	depression,	nerves,	visions,	suicide)	and	child	psychopathology,	including	child-	

and	parent-reported	dimensional	and	diagnostic	assessments.	For	the	sake	of	simplicity,	

we	will	use	the	parent-reported	Child	Behavior	Checklist	(CBCL)	in	this	example.	Based	on	

the	earlier-described	considerations,	a	hypothetical	researcher	delineates	several	tiers	of	



covariates	to	include	in	the	models	in	sequence	(or	in	a	stepwise	fashion).	The	first	tier	

includes	“essential”	covariates	that	the	researcher	views	as	requisite	to	include	in	the	

models,	the	second	tier	includes	“non-essential”	covariates,	and	the	third	tier	includes	

“substantive”	covariates	that	can	inform	the	robustness	of	the	model,	or	more	generally	

inform	the	theoretical	model.	

For	this	research	question,	the	first	tier	includes	age	and	gender,	which	tend	to	be	included	

in	most	models.	Additionally,	this	includes	a	composite	of	maternal	alcohol	consumption	

while	pregnant.	The	inclusion	of	this	covariate	is	deemed	as	essential	to	rule	out	the	

possibility	that	any	associations	between	parental	history	of	alcohol	problems	and	child	

psychopathology	was	not	due	to	prenatal	alcohol	exposure.	The	second-tier	covariates	

include	race/ethnicity,	household	income,	parental	education,	and	parental	marital	status.	

In	the	context	of	this	research	question,	these	covariates	might	be	deemed	“non-essential”	

for	one	of	three	reasons.	First,	they	may	not	have	any	clear	hypotheses	surrounding	the	

role	of	these	covariates	in	the	IV-DV	associations.	Second,	there	may	be	reason	to	think	that	

there	are	important	group	differences	on	the	second-tier	covariates	that	are	worth	

exploring	and	reporting.	Third,	the	researcher	might	expect	that	some	of	the	“non-

essential”	covariates	may	be	causally	related	to	the	IVs	and	DV	or	may	share	common	

causes	with	them.	

Regarding	race/ethnicity,	if	the	researcher	is	interested	in	the	role	of	race/ethnicity	in	the	

associations	between	parental	history	of	alcohol	problems	and	child	psychopathology,	they	

might	also	consider	testing	these	associations	across	these	groups	rather	than	covarying	

race/ethnicity.	Here,	the	researcher	may	not	have	specific	hypotheses	regarding	group	



differences	in	these	associations,	but	exploratory	group	differences	may	be	of	interest.	

Simply	covarying	race/ethnicity	may	mask	important	group	differences.	

Other	“non-essential”	covariates	include	household	income,	parental	education,	and	

parental	marital	status.	Here,	the	researcher	expects	that	some	of	these	covariates	may	be	

either	causally	related	to	the	IVs	or	DV	or	may	share	a	common	cause.	For	instance,	some	

data	suggest	that	parental	externalizing	traits	–	which	is	likely	to	subsume	parental	history	

of	alcohol	problems	–	are	associated	with	both	increased	likelihood	of	divorce	and	child	

externalizing.	Importantly,	however,	parental	divorce	and	child	externalizing	are	not	

causally	related	(e.g.,	Lahey	et	al.,	199877).	Similarly,	other	data	suggest	that	alcohol	

problems	and	divorce	are	genetically	correlated78.	Together	these	data	suggest	that	

demographic	may,	at	least	in	part,	proxy	our	variables	of	interest	(here,	parental	history	of	

alcohol	problems	and	externalizing	psychopathology).	Moreover,	controlling	for	indicators	

that	share	a	common	cause	with	our	IVs	and	DVs	partials	out	an	important,	etiologically	

relevant	part	of	the	phenotype.	In	doing	so,	this	can	obscure	true	associations	between	the	

IV	and	DV.	Based	on	this	information,	the	research	might	decide	to	report	their	models	with	

and	without	these	covariates	and	consider	the	extent	to	which	differences	in	these	sets	of	

models	inform	their	theoretical	model.	

Finally,	a	third	tier	of	covariates	may	be	used	to	test	the	robustness	of	the	associations	

between	parental	history	of	alcohol	problems	and	child	psychopathology.	We	refer	to	these	

as	“substantive”	variables,	although	the	distinction	between	demographic	and	

“substantive”	variables	can	be	arbitrary,	like	in	the	case	of	parental	marital	status	and	

alcohol	problems.	As	we	noted	earlier,	also	available	in	the	ABCD	data	are	parental	history	



of	drug	use,	trouble	with	the	law,	and	other	forms	of	psychopathology.	Including	other	

forms	of	externalizing	behavior,	such	as	drug	use	and	having	trouble	with	the	law,	may	

inform	the	extent	to	which	the	associations	between	parental	history	of	alcohol	problems	

and	child	psychopathology	are	more	general	to	parental	history	of	other	externalizing.	Our	

hypothetical	researcher	considers	this	a	possibility	given	research	demonstrating	

significant	etiologic	(including	genetic)	associations	between	numerous	forms	of	

externalizing	psychopathology	(e.g.,	Kendler	et	al.,	201179).	Should	the	researcher	find	that	

the	associations	between	parental	history	of	alcohol	problems	and	child	psychopathology	

are	attenuated	when	parental	history	of	drug	problems	is	included	in	the	model,	this	

suggests	that	the	associations	are	parental	history	of	substance	use	problems	general,	

rather	than	alcohol	specific.	Similarly,	the	associations	might	be	general	to	parental	history	

of	externalizing	behavior	if	the	associations	between	parental	history	of	alcohol	problems	

and	child	psychopathology	are	attenuated	when	parental	history	of	trouble	with	the	law	is	

included	in	the	model.	Both	of	these	tests	inform	the	robustness	of	the	proposed	research	

question.	In	this	case,	these	“substantive”	indicators	might	not	be	treated	as	covariates	per	

se,	but	rather	variables	whose	inclusion	and	exclusion	can	inform	the	theoretical	model.	

Determining	which	covariates	should	be	included	in	our	statistical	models	is	complex	and	

requires	considerable	thought.	We	caution	against	the	overinclusion	of	covariates	in	

statistical	models,	and	against	the	assumption	that	including	covariates	purifies	the	

associations	among	our	variables	of	interest.	Instead	their	inclusion	can	obscure	rather	

than	purify	such	associations.	



6.0 Discussion	

The	sample	size	of	ABCD	is	large	enough	to	reliably	detect	and	estimate	small	effect	size	

relationships	among	a	multiplicity	of	genetic	and	environmental	factors,	potential	

biological	mechanisms,	and	behavioral	and	health-related	trajectories	across	the	course	of	

adolescence.	Thus,	ABCD	will	be	a	crucial	resource	for	avoiding	Type	I	errors	(false	positive	

findings)	when	discovering	novel	relationships,	as	well	as	failures	to	replicate	that	result	

from	the	replication	sample	being	too	small	to	have	sufficient	power.	Moreover,	ABCD	will	

allow	for	stronger	interpretation	of	non-significant	results	as	they	will	not	be	due	to	low	

power	for	all	but	the	tiniest	of	effect	sizes.	Other	studies	in	the	field	suffer	from	false	

positives	that	do	not	replicate,	and	overestimation	of	effect	sizes	in	general,	which	typically	

arise	from	a	research	environment	consisting	of	many	small	studies,	p-hacking,	and	

publication	bias	towards	positive	findings80.	ABCD	will	therefore	help	directly	address	the	

replication	problems	afflicting	much	of	current	neuroscience	research1.	

While	not	of	course	completely	immune	to	these	problems	(especially	in	subgroup	and/or	

high-dimensional	analyses),	the	ABCD	Study	is	much	more	resistant	than	are	typical	small-

scale	studies,	because	its	large	sample	size	reduces	random	fluctuations	in	effect	size	

estimates	that	occur	within	small	n	studies.	Moreover,	use	of	highly	ascertained	subjects	

exacerbates	the	over-estimation	of	effect	sizes,	as	recently	demonstrated	in	the	context	of	

population	genetics52.	Again,	the	population	nature	and	large	sample	size	of	the	ABCD	

Study	will	substantially	mitigate	this	problem,	especially	in	conjunction	with	thoughtful	

control	of	measured	covariates.	

Because	of	the	sample	size	of	ABCD,	even	small	effects	(e.g.,	explaining	1%	of	variation	or	

less)	will	often	be	highly	significant.	In	this	scenario,	it	becomes	a	crucial	question	how	to	



interpret	and	utilize	the	observed	relationships	and	establish	their	“substantive	

significance.”	

It	is	possible	that	actual	(causal)	associations	found	in	nature	are	numerous	and	small	for	

many	outcomes.	There	is	already	strong	evidence	for	this	possibility:	Myer	and	colleagues	

(2001)81	reviewed	125	meta-analyses	in	psychology	and	psychiatry	and	found	that	most	

relationships	between	clinically	important	variables	are	in	the	r=0.15	to	0.3	range,	with	

many	clinically	important	effects	even	smaller.	Miller	et	al.	(2016)5	analyzed	associations	

between	multimodal	imaging	and	health-related	outcomes	in	the	UKBiobank	data.	Even	the	

most	significant	of	these	explained	around	1%	of	the	variance	in	the	outcomes.	Thus,	like	

with	individual	SNPs	in	a	GWAS	of	complex	traits,	there	are	likely	many	mechanisms	

involved	in	producing	health	outcomes,	and	each	individual	observed	relationship	is	a	

small	part	of	a	much	larger	interacting	system.	

It	is	therefore	very	possible	that	ABCD	will	predominantly	report	small	effect	sizes,	simply	

reflecting	the	fact	that	many,	if	not	most,	real-world	relationships	are	in	fact	small.	In	this	

scenario,	it	would	be	a	mistake	to	dismiss	all	small	effect	size	relationships	for	four	reasons.	

First,	an	ostensibly	small	effect	size	might	still	be	of	clinical	or	public	health	interest	

depending	upon	the	metric	and	the	importance	of	the	problem48.	Second,	some	types	of	

effects	(e.g.,	interactions	in	field	studies)	may	appear	to	be	small	via	traditional	metrics	

(e.g.,	𝑟)	but	represent	important,	nontrivial	effects63,82.	Third,	effects	may	be	small	due	to	

imprecise	measurement	even	if	the	underlying	relationships	are	far	from	weak.	Fourth,	

even	if	the	effects	of	individual	factors	are	small,	they	may	cumulatively	explain	a	sizeable	

proportion	of	the	variation	in	neurodevelopmental	trajectories,	a	scenario	which	has	



recently	played	out	in	genome-wide	association	studies	(GWAS)	of	complex	traits6.	If	every	

small	effect	is	thrown	away,	this	would	risk	never	making	substantial	progress	on	

explaining	a	substantial	amount	of	variation	in	total.	

At	the	same	time,	it	is	important	that	the	focus	remains	on	effect	sizes,	rather	than	binary	

“yes	or	no”	assessments	of	whether	data	support	or	reject	a	particular	hypothesis.	For	

example,	for	the	goal	of	obtaining	personally	relevant	modifiable	predictors	of	substance	

abuse	or	other	clinical	outcomes,	prediction	accuracy	of	75%	would	correspond	to	a	very-

large	effect	size	of	around	1.4,	accounting	for	about	30%	of	the	variance.	(However,	for	

modifications	of	variables	targeted	at	a	population	level	or	for	policy	interventions,	a	

smaller	effect	size	might	still	be	important.)	Thus,	black	or	white	judgements	on	whether	

associations	are	“significant”	can	be	fraught	with	error	and	cause	misleading	headlines	to	

be	published83.	Worse,	Type	I	or	Type	II	errors	(declaring	an	effect	to	be	significant	when	it	

is	not	real,	or	absent	when	it	is,	respectively)	can	mislead	the	field	for	long	periods.	Such	

results	could	delay	the	much	needed	progress	in	reducing	the	human	and	financial	costs	of	

mental	health	and	other	disorders.	

In	GWAS,	much	higher	standards	of	statistical	significance	are	required:	typically,	one	in	20	

million	rather	than	the	one	in	twenty	value	used	for	single	tests.	Control	of	false	positive	

findings	in	this	fashion	is	essential	whenever	a	very	large	number	of	tests	are	carried	out.	

The	neuroimaging	data	and	genomic	data	being	collected	in	ABCD	will	be	analyzed	with	the	

same	appropriate	adjustments	to	significance	levels	when	multiple	testing	is	involved.	

However,	there	remains	a	risk	that	researchers	who	utilize	the	public	data	could	fail	to	

observe	standard	procedures	for	correcting	for	multiple	testing,	not	control	for	design	



features	of	the	study	or	measured	confounding	variables	in	analyses,	or	not	include	effect	

size	estimates	in	their	publications	using	the	ABCD	data.	Here	journal	editors	and	

reviewers	provide	a	line	of	defense	against	misleading	or	incorrect	reports.	

ABCD	is	collecting	longitudinal	data	on	a	rich	variety	of	genetic	and	environmental	data,	

biomarker-based	measures,	markers	of	brain	development,	substance	use,	and	mental	and	

physical	health,	enabling	the	construction	of	realistically	complex	etiological	models	

incorporating	factors	from	many	domains	simultaneously.	While	establishing	reproducible	

relationships	between	pairs	(or	small	collections	of	measures)	in	a	limited	set	of	domains	

will	still	be	important,	it	will	be	crucial	to	develop	more	complex	models	from	these	

building	blocks	to	explain	enough	variation	in	outcomes	to	reach	a	more	complete	

understanding	or	to	obtain	clinically-useful	individual	predictions.	Multidimensional	

statistical	models	must	then	incorporate	knowledge	from	a	diverse	array	of	domains	(e.g.,	

genetics	and	epigenetics,	environmental	factors,	policy	environment,	ecological	momentary	

assessment,	school-based	assessments,	and	so	forth)	with	brain	imaging	and	other	

biologically-based	measures,	behavior,	psychopathology,	and	physical	health,	and	do	this	in	

a	longitudinal	context.	The	sample	size,	duration	of	study,	and,	importantly,	the	richness	of	

data	collected	in	ABCD	will	be	important	for	attaining	this	goal.	
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Figure	6:	Models	for	Measurement	Contamination,	Spuriousness,	and	Mediation	
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Table	1:	ABCD	Baseline	and	ACS	2011-2015	Demographic	Characteristics	
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Table	2:	Unweighted	and	Weighted	Means	of	Desikan	Cortical	Volumes	

	 Mean	 SE	

Weighted	

Mean	 SE	

bankssts	 3238.48	 473.95	 3227.70	 472.83	

caudalanteriorcingulate	 2571.23	 476.91	 2559.34	 478.06	

caudalmiddlefrontal	 8326.70	 1408.47	 8277.25	 1398.77	

cuneus	 3645.25	 582.41	 3626.44	 582.07	

entorhinal	 1843.15	 339.44	 1835.95	 339.10	

fusiform	 12050.11	 1552.79	 12009.48	 1558.06	

inferiorparietal	 18387.31	 2432.67	 18325.23	 2428.86	

inferiortemporal	 13182.85	 1879.13	 13133.08	 1870.21	

isthmuscingulate	 3252.16	 534.48	 3239.51	 538.27	

lateraloccipital	 13334.05	 1870.71	 13283.90	 1848.41	

lateralorbitofrontal	 9295.28	 1036.65	 9258.68	 1035.60	

lingual	 8031.18	 1132.35	 7998.54	 1132.13	

medialorbitofrontal	 5976.38	 731.09	 5954.65	 725.41	

middletemporal	 14275.50	 1796.11	 14230.80	 1786.83	

parahippocampal	 2586.48	 378.94	 2576.70	 378.86	

paracentral	 4674.33	 672.68	 4660.61	 674.30	

parsopercularis	 5701.08	 849.03	 5683.61	 846.91	

parsorbitalis	 3097.73	 371.12	 3084.29	 371.66	

parstriangularis	 5178.54	 733.71	 5159.42	 732.41	

pericalcarine	 2505.86	 425.52	 2489.51	 424.71	

postcentral	 11822.49	 1599.97	 11788.14	 1593.43	



posteriorcingulate	 4196.07	 603.72	 4181.46	 606.51	

precentral	 15990.94	 1796.68	 15929.85	 1791.05	

precuneus	 12865.56	 1618.69	 12819.36	 1616.69	

rostralanteriorcingulate	 2963.47	 479.55	 2949.78	 479.97	

rostralmiddlefrontal	 21292.13	 2684.14	 21165.50	 2669.35	

superiorfrontal	 28758.00	 3204.70	 28616.28	 3197.22	

superiorparietal	 17020.90	 2172.80	 16961.33	 2161.06	

superiortemporal	 14575.38	 1645.94	 14519.78	 1652.24	

supramarginal	 13827.92	 1891.34	 13772.95	 1894.80	

frontalpole	 1153.78	 185.07	 1150.68	 186.20	

temporalpole	 2478.08	 309.09	 2472.20	 308.04	

transversetemporal	 1339.14	 216.87	 1333.57	 217.62	

insula	 7586.56	 857.66	 7556.20	 856.70	

total	 297024.05	 28733.94	 295831.76	 28686.91	
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Table	3:	Measures	of	Effect	Size	Relevant	for	ABCD	
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Table	4:	Model	fit	of	GMMs	for	Trajectories	BPM	Externalizing	Scores	
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Table	5:	GMM	Trajectory	Parameter	Estimates	
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Supplementary	Materials	

S.1	ABCD	Study	Aims	

The	major	aims	of	the	ABCD	Study	include:	

• Aim	1:	Development	of	national	standards	of	healthy	brain	development;	

• Aim	2:	Description	of	individual	developmental	trajectories	in	terms	of	neural,	
cognitive,	emotional,	and	academic	functioning,	and	influencing	factors;	

• Aim	3:	Investigation	of	the	roles	and	interaction	of	genes	and	the	environment	on	
development;	

• Aim	4:	Examination	how	physical	activity,	sleep,	screen	time,	sports	injuries	
(including	traumatic	brain	injuries),	and	other	experiences	affect	brain	development;	

• Aim	5:	Determination	and	replication	of	factors	that	influence	the	onset,	course,	and	
severity	of	mental	illnesses;	

• Aim	6:	Characterization	of	the	relationship	between	mental	health	and	substance	use;	

• Aim	7:	Specification	of	how	use	of	different	substances	affects	developmental	
outcomes,	and	how	neural,	cognitive,	emotional,	and	environmental	factors	influence	
substance	use	risk,	involvement,	and	progression.	
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S.2	Effects	of	Publication	Bias	

Let	(𝑋, 𝑌)	denote	random	variables	with	population	correlation	𝜌	and	let	𝜁 = ()*
"((,*)

	denote	

the	Fisher	z-transformation	of	𝜌.	Further,	let	𝑟!	denote	the	Pearson	correlation	based	on	a	

sample	of	size	𝑛	independent	draws	of	(𝑋, 𝑌)	and	𝑧! =
().!

"((,.!)
	is	its	Fisher	z-transformation.	

It	is	well	known	that	𝑧!	is	approximately	normally	distributed	with	mean	𝜁	and	standard	

error	 (
√!,0

.84	Finally,	let	𝑞!(|𝑟!|)	denote	the	probabilty	that	a	given	𝑟!	is	published,	

dependent	only	on	the	sample	size	𝑛	and	the	absolute	value	of	the	observed	correlation,	

|𝑟!|.	For	example,	if	signficance	at	the	𝛼 = 0.05	level	increases	publication	probability,	then	

𝑞!(|𝑟!|) = 𝑝1	if	|𝑧!| <
(.34
√!,0

	and	𝑞!(|𝑟!|) = 𝑝(	otherwise,	where	0 ≤ 𝑝1 < 𝑝( ≤ 1.	As	an	

extreme	case,	𝑝1 = 0	implies	only	``signficant’’	results	are	published.	More	generally,	we	

assume	0 ≤ 𝑞!(|𝑟!|) ≤ 1	for	all	𝑛	and	|𝑟!|	and	that	the	set	𝑆 = {𝑟!|𝑞!(𝑟!) > 0}	has	positive	

Lebesgue	measure.	Given	the	above	model,	the	probability	density	function	of	|𝑧!|	is	given	

by	𝑓!(|𝑧!|) = 𝜙5(𝑧!|𝜁,
(

√!,0
)𝑞!(|𝑧!|)/𝑄!,	where	𝜙5 	is	a	folded	normal	density	and	the	

support	of	𝑓!	is	on	the	non-negative	real	line.	𝑄!	is	a	normalizing	factor	given	by	𝑄! =

∫ 𝜙56
1 (𝑧!|𝜁,

(
√!,0

)𝑞!(𝑧!)d𝑧.	Letting	ℎ	denote	the	inverse	Fisher	z-transformation,	the	

expectation	of	|𝑟!|	under	the	publication	bias	model	is	then	given	by	E!{𝑟!} =

∫ ℎ6
1 (𝑧!)𝑓!(𝑧!)d𝑧.	Code	for	computing	the	expected	value	and	bias	of	|𝑟!|	as	an	estimator	

of	𝜌	is	given	in	the	ABCD	Biostatistics	R	package	at	https://github.com/ABCD-

STUDY/ABCD-BIOSTATISTICS/.	
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