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Summary. We consider causal mediation analysis when exposures and mediators vary over
time. We give non-parametric identification results, discuss parametric implementation and also
provide a weighting approach to direct and indirect effects based on combining the results of two
marginal structural models. We also discuss how our results give rise to a causal interpretation
of the effect estimates produced from longitudinal structural equation models. When there are
time varying confounders affected by prior exposure and a mediator, natural direct and indirect
effects are not identified. However, we define a randomized interventional analogue of natural
direct and indirect effects that are identified in this setting. The formula that identifies these
effects we refer to as the ‘mediational g-formula’. When there is no mediation, the mediational
g-formula reduces to Robins’s regular g-formula for longitudinal data. When there are no time
varying confounders affected by prior exposure and mediator values, then the mediational g-
formula reduces to a longitudinal version of Pearl’s mediation formula. However, the mediational
g-formula itself can accommodate both mediation and time varying confounders and constitutes
a general approach to mediation analysis with time varying exposures and mediators.

Keywords: Counterfactual; Direct and indirect effect; Longitudinal data; Mediation; Pathway
analysis; Time varying confounding

1. Introduction

There has recently been considerable methodologic development on approaches to mediation
and pathway analysis from within the causal inference literature (Robins and Greenland, 1992,
Pearl, 2001; van der Laan and Petersen, 2008; Goetgeluk et al., 2008; VanderWeele and Vansteel-
andt, 2009; Imai et al., 2010; Tchetgen Tchetgen and Shpitser, 2012, 2014; Lange and Hansen,
2011; Martinusen et al., 2011; Vansteelandt et al., 2012; VanderWeele, 2015). This work has
extended traditional approaches for mediation analysis to settings with interactions and non-
linearities and has clarified the no-unmeasured-confounding assumptions that suffice for a
causal interpretation of direct and indirect effects. Almost all of this literature has considered a
single exposure at one point in time, a single mediator and a single outcome. There is also now
a literature on a single exposure, mediator and outcome but with a time-dependent confounder
that is affected by the exposure and which itself affects both the mediator and the outcome
(Albert and Nelson, 2011; Imai and Yamamoto, 2013; VanderWeele et al., 2014; Tchetgen Tch-
etgen and VanderWeele, 2014; Daniel et al., 2015); however, this literature also does not allow
the exposures and the mediators themselves to vary over time. In practice, often longitudinal
data are available and both the exposure and the mediator vary over time. There is currently very
little work in the causal inference literature with exposures and mediators that vary over time.
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Only a few references in causal inference briefly touch on such settings with longitudinal data
(van der Laan and Petersen, 2008; VanderWeele, 2009; Shpitser, 2013) and an approach that
fully accommodates time varying exposures and mediators and time varying confounding is yet
to be developed. Although some work has been done in psychology on mediation analysis with
longitudinal data (see MacKinnon (2008)), this does not fall within a formal causal framework
and issues of time varying confounding have not been addressed.

Some of the difficulty is that the concepts of natural direct and indirect effects (Robins and
Greenland, 1992; Pearl, 2001) that have been employed in the causal inference literature on
mediation are not identified from the data in many settings involving time varying exposures
and mediators. In particular whenever there is a mediator—-outcome confounder that is affected
by the exposure, these natural direct and indirect effects are not non-parametrically identified
irrespectively of whether data are available on the exposure-induced confounder or not (Avin
et al., 2005). In longitudinal settings such exposure-induced confounding may be very common.
In this paper we propose an approach to pathway analysis that can be used in settings with time
varying exposures and mediators. To do so, instead of using the natural direct and indirect effects
that are commonly employed in the literature we use a randomized interventional analogue of
natural direct and indirect effects (see Didelez et al. (2006) and VanderWeele et al. (2014)) that
can be identified from longitudinal data under weaker assumptions than the natural direct and
indirect effects. The approach that we develop draws on both Robins’s g-formula (Robins, 1986)
and Pearl’s mediation formula (Pearl, 2001) but unites these in a single framework that allows us
to assess mediation with time varying exposures and mediators in the presence of time varying
confounders. We shall refer to the resulting empirical expression as the mediational g-formula.
In the absence of time varying confounders it reduces to a time varying analogue of Pearl’s
mediational formula. In the absence of mediation it reduces to Robins’s g-formula. However,
the approach with the mediational g-formula can handle both mediation and time varying
confounding; it unites the g-formula and the mediation formula together in a single framework.
It is applicable to assess questions of mediation over a broad range of contexts. We illustrate
how the approach can be implemented by fitting two marginal structural models; we also show
how it can be implemented by using sets of linear structural equation models that are common
in the social sciences (MacKinnon, 2008) and how it clarifies the interpretation of effects in this
context. However, these are only two settings in which the approach can be used. It is much more
general and can be applied to numerous settings. We believe that the mediational g-formula will
lie at the foundation of numerous future developments concerning the assessment of mediation
with time varying exposures and mediators.

Sample code for fitting two linear marginal structural models to estimate the interventional
direct and indirect effects can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Natural direct and indirect effects versus randomized interventional
analogues

In this section we shall review the definitions and identification assumptions for the natural
direct and indirect effects that are defined in the causal inference literature on mediation. We
shall moreover contrast this with randomized interventional analogues of natural direct and
indirect effects which can be identified under weaker assumptions and which will, in the following
section, be extended to settings with time varying exposures and mediators.

Let A denote the exposure of interest, Y the outcome, M the potential mediator and V a
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Fig. 1. Simple model for mediation

set of baseline covariates that are not affected by the exposure. For now we shall assume that
the exposure and mediator occur at only one point in time. We shall let ¥, and M, denote
respectively the values of the outcome and mediator that would have been observed if exposure
A had been set to level a. We shall let Y,,, denote the value of the outcome that would have
been observed if exposure A had been set to level a, and mediator M had been set to level m.
These counterfactual or potential outcome variables, Y,, M, and Y,,, all presuppose that at
least hypothetical interventions on A and M are conceivable. A further assumption is generally
made, which is sometimes referred to as the ‘consistency assumption’, that, when the observed
exposure A =a, the counterfactual outcomes Y, and M, are respectively equal to the observed
outcomes Y and M, and likewise, when observed A =a and M =m, the counterfactual outcome
Y,m 1s equal to Y; we also make a ‘composition’ assumption that ¥, =Y, .

Using these counterfactuals, Robins and Greenland (1992) and Pearl (2001) defined what
have since come to be called controlled direct effects and natural direct and indirect effects.
The average controlled direct effect, conditional on covariates V = v, comparing exposure level
A=a with A=a™ (for a binary exposure a=1 and a* =0) and fixing the mediator to level
m, is defined by E(Y,, — Yz+m|v) and captures the effect of exposure A on outcome Y, inter-
vening to fix M to m; it may be different for different levels of m. The natural direct effect,
conditional on covariates V =v, is defined as E(Y,u,. — Ya+m,. |v) and differs from controlled
direct effects in that the intermediate M is set to the level M,«, the level that it would have
naturally been if the exposure had taken value A =a™*. Similarly, the average natural indi-
rect effect, conditional on V =v, can be defined as E(Y,m, — Yam,. |v), which compares the
effect of the mediator at levels M, and M, on the outcome when the exposure is set to
A =a. Natural direct and indirect effects have the property that a total effect E(Y, — Y «|v)
decomposes into a natural direct and indirect effect: E(Y, — Yy« |v) = E(Yapm, — Yar M. V) =
E(Yam, — Yam |V) + E(Yam, — Yarm,. |0); the decomposition holds even when there are in-
teractions and non-linearities.

In general, stronger no-unmeasured-confounding assumptions are required to identify direct
and indirect effects than total effects. On a causal diagram interpreted as a set of non-parametric
structural equations (Pearl, 1995, 2009), the following four assumptions suffice to identify nat-
ural direct and indirect effects from data (Pearl, 2001; Shpitser and VanderWeele, 2011):

(a) the effect of the exposure A on the outcome Y is unconfounded conditional on V;

(b) the effect of the mediator M on the outcome Y is unconfounded conditional on (V, A);
(c) the effect of the exposure A on the mediator M is unconfounded conditional on V;

(d) none of the mediator—outcome confounders are affected by the exposure.

The assumptions would hold in a non-parametric structural equation model given by Fig. 1.
Only assumptions (a) and (b) are required to estimate controlled direct effects. Assumptions
(a)—(d) in the text, stated formally in terms of counterfactual independence, are

(@) Yau L A|V,
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Fig. 2. Mediation with a mediator—-outcome confounder L that is affected by exposure

(c) M, 1 A|V and
(d) Yam 1L My«|V.

Under these assumptions natural direct and indirect effects are identified (Pearl, 2001) and given
by the following expressions:

E(YaMa* - YH*MH* |v)=Z{E(Y|a,m, 'U) —E(Y|a*,m,v)}P(m|a*,v),
m

E(Yam, — Yam,. V) =Y E(Y|a,m,v){ P(m|a,v) — P(m|a*,v)}.

Importantly, however, if there is a mediator—outcome confounder L affected by exposure then
assumption (d) will fail and natural direct and indirect effects will not be identified from the
data (Avin et al., 2005). Assumption (d) would thus be violated in Fig. 2. The counterfactual
independence assumption (d) that Y, 1L M,«|V is also somewhat controversial for other rea-
sons. Although it will hold in the causal diagram in Fig. 1 if this diagram is interpreted as a
non-parametric structural equation model as in Pearl (2009), there are other interpretations
of causal diagrams wherein assumption (d) may fail even in Fig. 1 (Robins, 2003; Robins and
Richardson, 2010) because these alternative interpretations impose fewer conditional counter-
factual independences than are implied by a structural equation model. Further discussion is
provided elsewhere (Robins and Richardson, 2010; VanderWeele, 2015).

Even if this assumption, that Y, 1. M,«|V, fails, an analogue of natural direct and indirect
effects, based on randomized interventions, can be identified from the data under assumptions
(a)—(c) alone. We shall conclude this section with a discussion of these randomized interven-
tional analogues of natural direct and indirect effects and in the following section we shall
consider longitudinal extensions of these effects. These randomized interventional analogues
are essentially equivalent to those proposed by Didelez et al. (2006) and Geneletti (2007), but
here we employ and extend these concepts to a longitudinal context for mediation.

Let G,y denote a random draw from the distribution of the mediator with exposure status
fixed to a conditional on V =v. The effect E(Y,G,,) — E(Y4G,,) 1s then the effect on the outcome
of randomly assigning an individual who is given the exposure to a value of the mediator from the
distribution of the mediator among those given exposure versus not given exposure (conditional
on the covariates); this is an effect through the mediator. Next consider the effect E (YaGyep,) —
E(Ya+G,),); this is a direct effect comparing exposure versus no exposure with the mediator in
both cases randomly drawn from the distribution of the population when given no exposure
(conditional on the covariates). Finally, the overall effect E(Y,c,,) — E(Ya*G,,) cOmpares the
expected outcome when (conditional on the covariates) having the exposure with the mediator
randomly drawn from the distribution of the population when given the exposure (conditional on
covariates) with the expected outcome when not having the exposure with the mediator randomly
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drawn from the distribution of the population when not exposed. With effects thus defined
we have the decomposition E(YuG,,) = E(Ya*Gye) = { E(YaGy,) — EYaGyr) } +{EXaGys),) —
E(YgG,. ‘U)} so that the overall effect decomposes into the sum of the effect through the mediator
and the direct effect. We shall refer to these effects as interventional direct and indirect effects
since, unlike the natural direct and indirect effects, they are effects that could in principle be
brought about in practice by interventions on the exposure and the mediator. These are not the
natural direct and indirect effects that were considered earlier but are instead analogues arising
from fixing the mediator for each individual, not to the level it would have been for that individual
under a particular exposure, but, rather, to a level that is randomly chosen from the distribution
of the mediator among all of those with a particular exposure, conditional on the covariates.
These effects are identified under assumptions (a)—(c) alone (VanderWeele et al., 2014). Under
these assumptions (a)—(c) the interventional direct and indirect effects { E(Y,G,,. W) = EYaGy, )}
and {E (YaG,p) — E(YaGa*lu)} are in fact identified by the same empirical expression as those
given above for natural direct and indirect effects, and the interventional total effect equals the
regular total effect; points that we shall return to again below in the longitudinal setting. Note
that assumption (d) is not necessary for the identification of these interventional effects; it is
not necessary because the mediator is being fixed to a level that is randomly chosen from the
distribution of the mediator among all of those with a particular exposure, rather than fixed to
the level that it would have been for that individual under a different exposure status. Because
assumptions (d) is not necessary the interventional direct and indirect effects are also identified
in interpretations of causal diagrams (Robins and Richardson, 2010) other than Pearl’s non-
parametric structural equations (see VanderWeele et al. (2014)). Moreover, even if there is a
mediator-outcome confounder affected by the exposure as in Fig. 2, the interventional direct
and indirect effects may still be identified from the data but the empirical expressions equal to
these effects no longer coincide with those given above for natural direct and indirect effects.
They are instead, if Fig. 2 is a causal diagram, given by (VanderWeele et al., 2014)

E(YaG o) — EXarG o) =Y {E(Y|a,l,m,v) P(l|a,v) — E(Y|a™,l,m,v) P(lla*,v)} P(m|a*,v),
I,m

E(YaGy,) — EYaGy,) =22 E(Yla,1,m, v) P(l|a, v){ P(m|a,v) — P(m|a*, v)}.
I,m

3. Time varying exposures and mediators and the mediational g-formula

Suppose now that the exposure, mediators and possibly confounding variables vary over time.
Let (A(1),...,A(D), (M(1),...,M(T)) and (L(1),...,L(T)) denote values of the exposure,
mediator and time varying confounders at periods 0, ..., T, with initial baseline covariates V,
and subsequent temporal ordering A(z), M(¢), L(t). We shall revisit this question of temporal
ordering again later in the paper. The relationships between the variables are given in Fig. 3.
In what follows it is in principle possible to allow the mediator at each time M(r) to denote a
vector of mediators to allow for assessing mediation over time through a set of time varying
mediators.

For any variable W, let W () = (W(1),..., W(?)) and let W = W(T) = (W(1),..., W(T)). Let
W@ = (W(),..., W(T). By convention, we let W(r) denote the empty set for ¢+ <0. Let Y
be the counterfactual outcome if A were set to a and if M were set to ri. Let Mz(7) be the
counterfactual value of M(r) if A were set to a. We assume consistency that when observed
A=a we have M;(t) = M(7) and Y;(f) = Y(f) and when observed A =a and M = we have
Y =Y.

If the entire vector A= (A(1),..., A(T)) is taken as the exposure and M = (M(1),..., M(D)
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Fig. 3. Time varying mediation with ordering of variables of A(t), M(¢), L(t)

is taken as the mediator then the variable L(1) is itself affected by the exposure (namely, by
A(1)) and in turn confounds the mediator—outcome relationship between M(2) and Y. From
this it follows that natural direct and indirect effects are not identified in this setting (Avin ez al.,
2005). However, identification of interventional direct and indirect effects may once again be
possible.

Let G,ﬂv(t) denote a random draw from the distribution of the mediator M () that would
have been observed in the population with baseline covariates V = v if exposure status A had
been fixed to a. Note that, at time ¢, G_d\v(t) will depend on a only through time 7. Let ¢ and
a* be two distinct exposure histories. We once again have a decomposition, even with time
varying exposures and mediators: E (Y&va V) — E¥ g Gaeto lv)={E (Ydém lv)— E (YdG_,;*‘,) lv)}+
{E (Ydéd*lv [v) — E(Y;. Gaero lv)} with {E(Y, G,V —E (Ydéd*\v |v)} being the interventional indi-
rect effect and {E(Y, 5de|v) —E(Y; Garlo |v)j~ the interventional direct effect. These effects will
of course vary according to the exposure trajectories a and a* being compared. For a binary
exposure a common choice would be comparing 1 and 0. For a continuous exposure one pos-
sible choice would be taking a and a@* each as a constant separated by 1-standard-deviation
difference in the exposure distribution centred at the mean. But any two trajectories can in fact
be compared.

The decomposition above is a decomposition of the interventional overall effect E(Y. iGan(®) |v) —
E(Yz*G g, V), Into interventional direct and indirect effects. We can, however, also decompose
an average treatment effect (just setting the exposure itself to different levels) into analogous
components. In this setting, the average treatment effect, conditional on baseline covariates
V =v, comparing exposure trajectories a and a*, is simply E(Yz|v) — E(Y+|v). We can decom-
pose this effect as E(Y;|v) — E(Yg+|v) = { E(Yz|v) — E(YdG-d*‘vlv)} + {E(Yﬁéﬁwlv) — E(Yz|v)},
where the first component, E(Y;|v) — E (ch-ﬁw |v) is an interventional analogue of the natural
indirect effect and examines how the outcome under exposure a would change if the mediator
were fixed for each individual to a random draw from the distribution of the mediator un-
der exposure *, i.e. from Mg+, and the second component E(Y, 7G|V — E(Xar V) is similarly
an interventional analogue of the natural direct effect. The downsi&e of the decomposition of
the average treatment effect is that the direct effect here captures both the effect of changing
the exposure from a* to a but also the effect of having the mediator set to its natural level
under a* versus a random draw from the mediator under a* since E(Yd(-;dﬂuw) — E(Yz|v) =
{EW 64, 10) = EQag,. [0} +{EWV gz, [v) — EQeyg,,  10)}, where the second term is the
natural (iirect effect but the first term essentially captures the difference between having the
mediator set to its natural level under a* versus a random draw from the mediator under a*. This
was not an issue with the direct effect in the decomposition of the interventional overall effect
above. However, even with the decomposition of the average treatment effect, it is not an issue
with the interventional indirect effect (which, within the context of mediation, will often be what
is of interest), since E(Yz|v) — E(Ydéd*‘v|v) = {E(Yde‘uw) — E(Y5M5*|u|v)} + {E(Ya-Ma_*‘v|v)
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—EY e |v) } where the first term is the natural indirect effect and the second still captures an
effect through the mediator, i.e. the effect of having the mediator set to its natural level under a*
versus a random draw from the mediator under a*. In any case, in the various decompositions
above, the central task becomes identifying the expected counterfactual E(Y déam'”) and we
give a result below with an empirical expression to identify this quantity.

Although these interventional direct and indirect effects defined here are not identical to
natural direct and indirect effects, they are in some sense the best we may be able to do as the
natural direct and indirect effects themselves will not be identified when a mediator—outcome
confounder is affected by the exposure; in such settings the interventional direct and indirect
effects are then all that we can estimate. Moreover, several further comments merit attention.
First, these interventional effects do in some sense capture mediated effects and pathways; the
interventional indirect effect { E(Yag,, |v) — E(YaG,,|v)} will be non-zero only if the exposure
changes the distribution of the mediator and that change in the distribution of the mediator
changes the outcome. Second, when there are no mediator—outcome confounders that are af-
fected by the exposure, it will be seen below that the interventional direct and indirect effects in
fact do coincide with natural direct and indirect effects; thus when the latter effects are identified
the interventional analogues in fact capture these effects. Third, when natural direct and indi-
rect effects are not identified, it will only be in extremely unusual settings that the interventional
analogue is non-zero, with there being no natural indirect effects. For that to occur, it would
be necessary that the exposure affects the mediator for a set of individuals that is completely
different from those for whom the mediator affects the outcome, i.e. there is no overlap in those
for whom the exposure affects the mediator and for whom the mediator affects the outcome.
Conversely for there to be a non-zero natural indirect effect with a zero interventional analogue
of that effect would essentially require exact cancellations to occur. Nevertheless, the interven-
tional analogues will not correspond exactly to the natural individual level variation because
they ensure only that the distributions of the mediator are similar across exposure groups. In
related work (Miles et al., 2015) we have considered bounds that are related to how far various
empirical expressions can deviate from the true natural direct and indirect effects when these
effects are not identified. Further extensions of that work to the time varying setting would be
of interest.

Finally, there are arguably some settings in which the interventional direct and indirect effects
are in fact what is of principal substantive interest, rather than the natural direct and indirect
effects. Suppose that we were interested in whether a racial health disparity (race constituting the
exposure, and health the outcome) was in some sense mediated by differences in socio-economic
distributions. The natural direct and indirect effects would entail hypothetical interventions on
the mediator of fixing a black individual’s socio-economic status to what it would have been
if they had been white. Counterfactual queries of the form of what a black individual’s socio-
economic status would have been if they had been of a different race strike many people as
strange or meaningless. Just as above we showed how we decomposed not simply the overall
interventional effect but also the average treatment effect by using the interventional analogue
ideas so also we can do something similar with disparities, i.e. with actual observed health dif-
ferences between black and white individuals. If the exposure variable A for example indicates
race (e.g. A=1 for black and A =0 for white), and M some marker of socio-economic status
(e.g. elementary school test scores), and Y some health outcome we could first consider the ac-
tual observed racial disparity E(Y|A=1,v) — E(Y|A=0,v). In this context let Y, denote the
outcome that we would have observed if we fixed the socio-economic variable M to a random
draw from the underlying distribution of the mediator M that would have been observed in
the white population with A =0 and baseline covariates V =v. We could then compare the ac-
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tual racial disparity E(Y|A=1,v) — E(Y|A =0, v) with the disparity that would have remained
if we had set the distribution of the socio-economic distributions of the black individuals to
be the same distribution as that of the white individuals, i.e. E(Y|A=1,v) — E Yg, 1A= 1,v).
We can further decompose the actual racial disparity E(Y|A=1,v) — E(Y|A=0,v) as E(Y|A=
Lv)—E(Y|A=0,0)={E(Y|A=1,v)— E(Yg, |[A=1,0)}+{E(Yg, |[A=1,0)— E(Y|A=0,v)},
where the first component {E(Y|A=1,v) — 7 (YGO\U |A=1,v)} is again the disparity that would
have remained if we had set the distribution of the socio-economic distribution of the black in-
dividuals to be the same distribution as that of the white individuals, and the second component
{E (YGO\L, |[A=1,v) — E(Y|A=0,v)} is the portion of the disparity that would remain under such
an intervention (VanderWeele and Robinson, 2014). These are once again interventional anal-
ogues of the natural direct and indirect effects, and the methods that are described below will be
applicable to this setting as well. See VanderWeele and Robinson (2014) for further discussion of
this race and health disparities context and corresponding assumptions. Note, however, that the
interventional analogues arguably involve much less problematic comparisons. By randomly
fixing the distributions to equal one another (and also decomposing the observed disparity
itself, rather than ‘the effect of race’), we avoid peculiar counterfactuals of the form of what
would have happened to an individual if they had been of a different race. Thus, in some cases
at least, the interventional analogues are not simply a second-best alternative to natural direct
and indirect effects but are themselves arguably the causal effects of interest.

Suppose now that, at each time, conditionally on the past, the exposure—outcome, mediator—
outcome and exposure—-mediator relationships are unconfounded. Formally, analogously to
(a)—(c), for all 7,

@) Ya LLA@|AGC—1), M@ —1),L(t—1),V,
(b") Yim AL M(£)|A(t), M(t — 1), L(t — 1), V and
() Ma(n) LLA@®D)|AGt—1), M@t —1),L(t—1),V.

It is shown in the on-line supplement that, although natural direct and indirect effects are not in
general identified in this setting (Avin et al., 2005), the interventional direct and indirect effects
{E(Y'va |v) — E(Ydéd*\v |v)} and {E(Ydému lv) — E(Yd*G_am |v)} are identified and E(YdG_a*w |v) is

a

given by

T-1
E(Yz6,,Iv) = / / E(Y|a,m,l,v) [T dP{l®)|a(),m(),1(t—1),v}
mJIUT—1) =1
deT [T P{m)d* 0. — 1)1 ¢ — 1), 0} dP T — 1)
1'(T-1) =1

Gt — D, m— 1,0 (t—2),0}|. (1)

We refer to expression (1) as the mediational g-formula. We shall denote this quantity by
Q(a,a*). Our interventional direct and indirect effects are under assumptions (a’)—(c’) then
given by

EYyg,,10) — E(gg,. V) =0(4,a) — 0(@,a),
E(Yz5,., 10— E(gq,, [0)=0@Gd*) — 0@*,a").

If L is empty as in Fig. 4 then the mediational g-formula reduces to

T
Q(d,ci*)=/E(Y|d,n'1,v) [TdP{m@®|a*@®),m(—1),v}.
m =1
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Fig. 4. Time varying exposures and mediators, with no time varying confounders

We show in the on-line supplement that if L is empty then, under a non-parametric structural
equation model, natural direct effects are identified by the mediational g-formula and are equal
to Q(a,a*) — Q(a*,a*) and natural indirect effects are identified by the mediational g-formula
and are equal to Q(a,a) — Q(a,a™).

In other words if L is empty then the empirical expressions that suffice to identify the in-
terventional direct and indirect effects under assumptions (a)—(c) in fact also in this setting
identify the natural direct and indirect effects as well by a time varying analogue of Pearl’s
‘mediation formula’ (Pearl, 2012). However, even when L is not empty so we cannot iden-
tify the natural direct and indirect effects themselves, we still can, under assumptions (a’)—(c’),
identify the interventional direct and indirect effects. Note that we thus have that, when the
natural direct and indirect effects are identified from the data by Pearl’s mediation formula
(see Shpitser and VanderWeele (2011)), they will coincide with the interventional direct and
indirect effects. The only setting in which the natural and the interventional effects will diverge
is when the natural direct and indirect effects are not empirically identified by Pearl’s medi-
ation formula (but it will of course not be possible in such settings to compare empirically
the natural and interventional effects since the natural effects are then not identified from the
data).

Also, if M were empty then expression (1) simply reduces to

T—1
/ / E(Y|a.Lv) [ dPU@0an. 1 —1),v)
mJI(T—1) =1

because, with M empty,

T
/_T [TdP{ ¢ —iac—D,0 ¢—2),0)1=1.
Mr-1nr=1

Thus, with M empty, formula (1) simply reduces to the regular g-formula of Robins (1986).
We see then that, on the one hand, if there is no time varying confounding the ‘mediational
g-formula’ (1) reduces to the time varying analogue of the mediational formula. And if, on
the other hand, there is no mediation, then the mediational g-formula reduces to the regular
g-formula of Robins (1986).

We now consider some variations on this approach. First, suppose instead that, after the
initial baseline covariates V, the subsequent temporal ordering of the variables were A (), L(z),
M(1), as in Fig. 5, and that analogously to (a’)—(c’) we have that, for all 7,

@")Yan L A@W|AGC—1), Mt —1),L(t—1),V,
(b")Yam AL M(1)| A1), M(t — 1),L(2), V and
(") Ma(t) L A@D|A@E—1),M(t—1),L1t—1),V.

Under assumptions (a”)—(c”) we would then have, using a similar derivation,
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Fig. 5. Time varying mediation with variable ordering A(t), L(t), M(t)

- I=1 - -
E(Ydég*‘vlv) =/ A : E(Y|C_lsn_/lala U) H dP{l(t)|&(t)arﬁ(t_ l)al(t - 1)5 U}
nJI(T—1) =1

m

T = g y
xd{ /T [T Pim®la* @), = 1,1' 0, v} P @1a* 0,0 = D, = 1,0}
1'(T-1)t=1

_ As another variation, instead of considering randomized interventions that fix the mediator
M for each individual to a value randomly drawn from the distribution in the subpopulation
with baseline covariates V =uv if A had been fixed to a*, we could instead consider randomizing
the mediator M for each individual to a value randomly drawn from the distribution in the
entire population if A had been fixed to a*. We then let G;(r) denote a random draw from the
distribution of the mediator M (#) that would have been observed in the population if exposure
A had been fixed to a and we have the decomposition E(Yz5. ) — E(Yzg.,) ={E(Yz5.) —
E(Y;6.)} +{E(Y;6,,) — E(Yz6,,) - Under assumptions (a')—(c’) we have

T—1
BWi,0= [ [ Bl v)[ [T dP{Ia0, ). 1~ 1), v} | dP()
mJI(T—1) t=1

x d[/_T 1Z[ Pim@|a* @), m—1),0 (t— 1), v} dP{I (¢t — Dja* @ — 1),
1

(T-1)t=1

i —1).1(t—2), v}dP(v)}
and under assumptions (a”)—(c¢”) we would then have
_ T-1 - _
E(Ya-G-d*)z/ / E(Y|a,m,l,v) { 11 dP{i®la@),m@—1),I(r—1),v} |dP(v)
i JIT—1) =1

T
xd UT T P{m(@)|a* @), m(—1),1 (1), v} dP{T (1)@ (@), i — 1),
[

(T-1) r=1

-1, v)}dP(v)} .

In all of these variations, we have fixed the entire mediator vector M to a random draw
from the mediator vector under a particular exposure history, i.e. from the distribution of
Mg(T). Although this could be viewed as a single draw from this multivariate distribution,
it is the case that prior values of the mediator and time varying confounders, e.g. M(r — 1)
and L(¢t — 1), will affect the current mediator M(¢) and will also be affected by prior exposure
A(t—1). Thus, in practice, we would have to use methods for time varying exposures to estimate
the distribution of Mz(T) and then draw from that distribution. The mediational g-formula
expressions above take this dependence into account and in the following section we present an
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inverse probability weighting estimation approach using marginal structural models likewise to
handle this dependence.

As yet another alternative, though one that we argue is not suitable for mediation analysis,
we could have, at each time ¢, fixed the mediator M(¢) for that time ¢ to a random draw from
the mediator distribution under a particular exposure history up to that point in time ¢. Said
another way, we could have fixed the mediator at each time ¢ to a random draw from the
mediator distribution under a specific exposure distribution marginally, rather than jointly, asin
all the variations that were considered above. If we had proceeded in this manner the identifying
expression would have differed. Doing so, however, we argue does not adequately allow for the
analysis of pathways. To see this, consider the following example: suppose that we were interested
in assessing the extent to which the effect of marital status (which may be time varying) on income
is mediated by time varying health status. Suppose that different individuals with different
marital status histories have different health trajectories, and that at least some individuals
have consistently poor health over time if and only if in the unmarried state, but that the vast
majority are healthy over time in either marital state. Suppose that it is only a long-term poor
health trajectory that substantially affects income. If we were to randomize the entire mediator
vector jointly to a draw from the health trajectory distribution of those who were unmarried then
some of these trajectories randomly drawn would be consistently low and would adversely affect
income. Using the approaches that were described above we would see that some of the effect
of marital status on income was mediated by preventing the consistently low health trajectories.
However, if we were instead to randomize the mediator marginally at each time point to a random
draw of the distribution of the unmarried population, the probability of obtaining a health
trajectory that was consistently low over time would be very small (since at each time the majority
are in the healthy state and thus to obtain a consistently low health trajectory would require low
probability events at each of the individual time points). Consequently, if we were to randomize
the mediator marginally at each time point, far fewer individuals with the mediator randomized
marginally at each time according to the unmarried distribution would have a health trajectory
which was consistently low at all time points than was actually so with the actual unmarried
population and thus there would be few individuals for whom income was substantially adversely
affected by health and we would for the most part miss those pathways by which marital status
affects income through consistently low health trajectories. To assess such pathways we need
to randomize the mediator jointly at all time points to a random draw from the distribution of
those with a particular exposure history, as in the approaches that were described above.

4. Estimation using marginal structural models

One possible estimation approach would be to use the identification formula (1) and to fit
parametric models for each of E(Y|a, i, 1, v), P{l_(t)|d(t), m(@),1(t—1), v} and P{M(5)|a(®),m(t—
1),1(r — 1), v}. This estimation approach is sometimes called a parametric g-formula approach. It
is described in the setting of time varying exposures outside the context of mediation elsewhere
(Robins and Hernan, 2009). We shall in fact consider one such approach in the context of
MacKinnon’s three-wave longitudinal mediation model (MacKinnon, 2008) in the following
section. However, in general such an approach requires fitting many parametric models and it
can sometimes be difficult to specify these models so that they are compatible with one another
and compatible with the null hypothesis of no effect; these problems are discussed in the setting
of time varying exposures outside the context of mediation elsewhere (Robins and Wasserman,
1997; Robins and Hernan, 2009). In this section we shall instead develop a more parsimonious
approach to estimating the interventional direct and indirect effects by using marginal structural
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models and inverse probability of treatment weighting (Robins et al., 2000). In the context of
mediation this will require fitting two marginal structural models.

For estimation, one reasonably straightforward approach entails positing a pair of marginal
structural models for E(Y;;) and P(Mz =ni). These models can in turn be used to evaluate
direct and indirect effects by using the expression

E(Y_G )—/_E(Yaﬁ)dP(Md* :rﬁ)

Consider a scenario in which Y is a continuous outcome. We assume the following simple
marginal structural linear regression model for the outcome:

E(Yg) =00+ 601cum(a) 4+ 8,cum(m) )

where 0y = {6o, 01,60, }, and cum(a) = X;<7 a(f) and cum(m) = ;<7 m(r) are the cumulative to-
tals of A and M respectively. This marginal structural model assumes that the joint effects of M
and A are cumulative, with a single parameter 6, encoding the effect of the M-process through
cum(m) =3,;<rm(?) and ) encoding the effect of the A-process through cum(a) = ;<7 a(?). For
continuous M or A, the model essentially states that the joint effects of M and A on Y operate

strictly through their respective historical average levels, and that these two processes do not in-
teract on the additive scale. A more flexible model, such as is given in detail in the on-line supple-
ment, could also be specified to account for possibly more complex dose-response relationships
between (a,m) and Y and interactions between m and a could also be specified. Together with
model (2), suppose that the following marginal structural model holds for the mediator process:

“NE{Ma(0}]=Bo(®) + 1 (Davg{a(} 3)

where ¢~1(-) is a link function, and = {Bo(®), B1(¢) : t} are potentially allowed to vary with
time, and avg{a(t)} =X ;< a())/t. It is easy to verify that models (2) and (3) give

E(Yy5.)= / E(Yon)dP(M e = 1)
:/_{90+910Um(d)+920um(n"1)}dP(Md*:n‘l)

=00 +6;cum(a) + 92( > glBo(t) + i (avg{a* (t)}]) -

t<T

In the special case where M(7) is continuous, and ¢g~! may be taken to be the identity link, we

obtain the following expression for the interventional direct effect:
E(Yz5.) — E(Xgg,,) =01{cum(a) — cum(a®)},
and, for the indirect effect,

E(Ys6,) —E(Yz5,)= 292 Brlavgla(n} —aveg{a™ (n}].
<T

These expressions simplify further when (31 (r) = 3; is assumed to be constant, and a™* (£) =0
and a (t) =1 for all ¢, giving 316, T for the indirect effect and 6, T for the direct effect.

For estimation, standard inverse probability weighting may be used to estimate (3, 8); how-
ever, construction of the weights varies somewhat with the underlying identifying assumptions.
Specifically, suppose that assumptions (a’)—(c’) hold; then a consistent estimate of # under model
(2) can be obtained by weighted least squares regression of ¥ on (cum(M), cum(A)) with esti-
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mated weight equal to
T-1 _ _ _
[T P{A®), M®)IAGC—1), M@ —1),L(t—1),V}™!
=1

where

P{A(D, M®)|A(t—1),M(t—1),L(t—1),V}
=P{M®|A®), M(t—1),L(t—1),V} P{ADIAGt—1),M(t—1),L(t—1),V}

is 2 maximum likelihood estimate of P{A(#), M(f)|A(t — 1), M(t — 1), L(t — 1), V) } under a stan-
dard parametric model. The parameter 3;(f) of the second marginal structural model (3) is
likewise estimated via inverse-probability-weighted regression with weight

t
[TP{A@WIAG—1), M@ —1),L(t—1),V}~".
s=1
In the on-line supplement we give SAS code for fitting these marginal structural models by using
inverse probability weights, in the context of the example in Section 6. A similar approach could
also be developed for marginal structural models conditional on baseline covariates V =v.

The expressions given above for the interventional direct and indirect effects pertain to the
simple linear marginal structural models (2) and (3) which involve either the average or cumula-
tive average of the exposure and/or mediator histories. It would not be difficult to modify these
models, by adding higher order terms, or incorporating lags, or separate effects on the outcome
for each time point; one could derive alternative expressions for the interventional direct and
indirect effects. In the on-line supplement we show, for example, how this can be done for a
marginal structural model for the outcome that involves an interaction between the cumulative
total of the exposure and the cumulative total of the mediator in their effects on the outcome.
Below we also discuss the case of a binary outcome and log-linear or logistic marginal structural
models. Various changes in the models will result in alternative empirical expressions, but the
structure of the proof would follow a very similar development.

In settings in which certain values of the exposure or mediator histories are unlikely the
exposure or mediator weights that are given above can become very large. To address this
problem, it has become standard practice in fitting marginal structural models to truncate
the weight, often at the first and 99th percentile of the weight distribution, to help to en-
sure more stable estimators (Cole and Hernan, 2008). To improve stability it may also be
preferable to use so-called stabilized weights (Robins et al., 2000) replacing the weight for
time 7 in model (2) by P{M(1)|A(1), M(t — 1)} P{A(®)|A(t — 1), M(t — 1)} /[P{M(0)|A(1), M (t —
1),L(t—1),V}P{A®|A(t—1),M(t — 1), L(t — 1), V}] and the weight for time 7 in model (3)
by P{A(I)M(t — 1)}/?’{A(t)|A(t —1),M(t—1),L(t—1),V}. This is especially important if the
exposure or mediator is continuous (Robins et al., 2000).

If at each time point the mediator variable M(¢) in fact consists of a vector of mediators,
it is still possible to proceed with the estimation in a similar manner, but we would require
a separate weight for each component in the vector M(¢). Provided that the ordering of the
exposure, mediator and time varying confounders was still A(¢), M(¢), L(¢) for the entire vector
M(t), we could choose any ordering of the components of M(¢) and the weight for a specific
component for M(r) would simply be conditional on A(f), M(t — 1), L(t — 1),V and the prior
components in M(f). The marginal structural model (2) could be modified to include a separate
cumulative average term for each component in M(r).

Itis also straightforward to modify the weights for estimation under the alternative identifying
assumptions (a”)—(c”) if the ordering of the variables is A(r), L(¢), M(¢), as in Fig. 5. Specifically,
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estimation of 6 under model (2) would instead use the following set of weights:
T—1 _ _ _ . _ _ _ -1
[T P{M®IA®), M(t—1),L(1), VIP{ADIAG— 1), M@ —1), L1 —1),V}
=1

whereas estimation of 3(¢) in the second marginal structural model (3) would use the same set
of weights as above. In any of these cases, inference can proceed by using bootstrapping, to
account appropriately for variation due to estimation of the weights.

Suppose now that the outcome is binary and that we replace the linear marginal structural
model for the outcome with a log-binomial marginal structural model:

log{ E(Yam) } =00 + 61 cum(a) + Orcum(rin).

Suppose further that M;(¢) are multivariate normally distributed with mean

Bo(®) + Bi(Havg{a®)}.

We show in the on-line supplement that the interventional direct effect on a risk ratio scale is
given by
log{E(Y;6,,)/E(Yz:6.,)} =01 {cum(a) — cum(a*)}
and the interventional indirect effect on a risk ratio scale is once again given by
log{E(Y;6.)/E(Y;6.)} =02 3 Bi(0[avela®n} —ave{a* (n)}].
1<T
As before, the expressions above further simplify when £y(¢) = 8y and 3; () = 8 are assumed
to be constant and a® () =0 and a(r) =1 for all ¢, giving 6; T for the direct effect and 316>T
for the indirect effect. If the binary outcome is rare, the same formulae hold approximately if a
logistic marginal structural model is fitted to the data. Similar expressions would also pertain to
marginal structual Poisson or negative binomial models with log-link. In the on-line supplement
we also show how these formulae extend to the setting in which the marginal structural model
for the outcome includes an interaction term between the cumulative exposure total and the
cumulative mediator total in their effects on the outcome.

5. A counterfactual analysis of MacKinnon’s three-wave mediation model

MacKinnon (2008) considered a three-wave mediation model with linear structural equations
as depicted in Fig. 6. We relabel indices somewhat to correspond to the notation of this paper,
and we also add a set of baseline covariates C, which is allowed to have effects on all other
variables on the diagram, but otherwise the model that is considered here is MacKinnon’s
model (MacKinnon (2008), pages 204-206: ‘Autoregressive Model I1T°). We let A(0), M(0) and
Y(0) denote baseline values of A, M and Y that could be included in the baseline covariates C
but are given here to make clearer the relationship with MacKinnon (2008). Consider then the
following regression models:

E{M(1)|m(0), y(0),a(1),c} = B0+ B11a(0) + Sr2a(1) 4+ S13m(0) + F14 y(0) + 5 5c,
E{M(2)|m(1),y(1),a(2),c}= B0+ Bara(l) + Bra(2) + fr3m(1) + Bra y(1) + Basc,
E{Y(1)|m(1), y(0),a(l),c} =019+ 011a(0) +O12a(1) + 013m(0) 4+ 014m(1) + 015y(0) + 6 4c,
E{Y(2Q)|m(2),3(1),a(2),c} =020+ br1a(1) +020a(2)+ 03m(1) +024m(2) + 625 y(1) 4 O5c.

In these models, the mediator and the outcome depend on only the two most recent past exposure
values. The mediator model depends on only the most recent past mediator value and the most
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Fig. 6. MacKinnon three-wave mediation model

recent past outcome value. The outcome model depends on the two most recent mediator values
and the most recent outcome value.

We show in the on-line supplement that under assumptions (a’)—(c’) with V = (C, A(0), M(0),
Y(0)) and L(1) =Y(1), with two intervention periods, A(1) and A(2), the interventional direct
and indirect effects are given by

E{Y;6,., DWW} —E{Yq,., D} = (021 +012025){a(l) —a* (D)} +022{a(2) —a* (D)}
E{Y;5, v} = E{Y;5,., (DIv} = (023512 + 025014812 + B21024 + B2a012024) {a(1) —a* (1)}
+ fa2624{a(2) —a* (2)}.

The first expression is the interventional direct effect with time varying exposure and mediator
and the second expression is the interventional indirect effect with time varying exposure and
mediator.

There is arguably a twofold advantage of using data like those in Fig. 5 and using a modelling
approach like that described above, over simply applying the standard methods for mediation
to one point in time, e.g. using the variables A(1), M(1) and Y(1). First, by having multiple
waves of data, we can control for baseline levels of the exposure, mediator and outcome, i.e.
for A(0), M(0) and Y(0). This is potentially important because such baseline values of the
exposure, mediator and outcome may serve as the most important confounders for the effects of
subsequent values of exposure and mediator on the outcome. By including such baseline values
of the exposure, mediator and outcome, in our covariate set, our confounding assumptions
required for a causal interpretation of our estimates are rendered much more plausible. Second,
by using multiple waves of subsequent exposure and mediator and outcome data (i.e. by using
A(l), M(1), Y(1), A(2), M(2) and Y(2) rather than just A(1), M(1) and Y(1)) we may be able to
capture more fully the dynamics of mediation over time. For example, we can pick up, in our
indirect effect estimates, mediated effects of A(1) through M(1) to Y(2) directly and also those
from A(1) through M(1) to Y(1) to Y(2) or from A(1) to M(2) to Y(2), etc.

Here we have given a counterfactual analysis of one specific mediational model with three
waves of data on the exposure, mediator and outcome (MacKinnon, 2008). A similar approach
could in principle be used for other complex longitudinal models that are often used in the social
sciences to provide counterfactual-based interpretations of direct and indirect effect estimates.

6. lllustration

We apply the marginal structural model approach to time varying mediation to an example from
psychology. Loneliness has been shown to be associated with subjective wellbeing, both cross-
sectionally and longitudinally (Cacioppo et al., 2008). Likewise, loneliness predicts subsequent
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depression longitudinally, even after control has been made for initial depression levels (Heikki-
nen and Kauppinen, 2004; Cacioppo et al., 2009). These associations persist even after control
has been made for objective measures of social support (Cacioppo et al., 2009). Prior analyses
considered these relationships by using repeated measures marginal structural models (Vander-
Weele et al., 2011, 2012) and again found fairly strong evidence for effects of loneliness on both
depression and subjective wellbeing. Although not unrelated, there is good empirical evidence
that depression and subjective wellbeing are conceptually distinct. For example, recent empirical
work (Gargiulo and Stokes, 2009) indicates that subjective wellbeing has relatively poor predic-
tive ability for diagnosing clinical depression; moreover, many clinically depressed individuals
have considerably higher levels of subjective wellbeing than might be expected (Cummins et al.,
2007).

The relationships between loneliness, depression and subjective wellbeing are complicated by
reciprocal relationships and feedback between these various constructs. Loneliness may bring
with it heightened depression potentially leading to social withdrawal and isolation and yet
greater levels of loneliness. It may also be that individuals with a perception of high levels of
subjective wellbeing may act more positively towards others, prompting a positive response,
closer social ties, less loneliness and subsequently a yet greater sense of subjective wellbeing
(Hawkley et al., 2007). Depression itself of course probably contributes adversely to subjective
wellbeing. In addition to these reciprocal relationships, the analysis of the effects of loneliness,
depression and subjective wellbeing is further complicated by the fact that these effects may
depend not simply on the level of a construct at a particular point in time but on the entire
history of the psychological construct of interest.

A question that therefore arises—and one that can only be properly addressed with longitu-
dinal data—is the extent to which the effect of loneliness on subjective wellbeing is mediated by
depression and the extent to which it is through other pathways, e.g. loneliness directly leading
to a negative sense of wellbeing. Here we use five waves of data from the ‘Chicago health, aging,
and social relations study’, which was a population-based study of 229 individuals living in
Cook County, Illinois, aged 50-67 years. Data were available at baseline and then subsequently
collected once per year for four additional years. The data are structured in correspondence
with Fig. 3 and the notation above. The first wave was taken as baseline covariates V (including
baseline measurements of loneliness, depression and subjective wellbeing); the next three waves
were used for the time varying exposure (loneliness) A, the time varying mediator (depressive
symptoms) M and the time varying confounders L; the final wave was used only for the sub-
jective wellbeing outcome Y. Subjective wellbeing measures in waves 2, 3 and 4 were taken as
time varying confounders. Loneliness was assessed by using the University of California at Los
Angeles UCLA-R score, a 20-item questionnaire measuring general perception of social con-
nection or isolation with scores ranging from 20 to 80 and higher scores indicating higher levels
of loneliness. Depression was assessed by using the Center for Epidemiologic Studies depression
scale CES-D, which is a 20-item measure with each scored 0-3, which after removing the one
loneliness question gives a measure, CES-D-ML, with scores ranging from 0 to 57. Subjective
wellbeing was assessed by using the five-item satisfaction-with-life scale (Diener ef al., 1985) in
which respondents rate each item on a scale from 1 to 7 with scores ranging from 5 to 35. All
measures were standardized.

We apply the marginal structural model approach to the mediational g-formula and fit a linear
marginal structural model for the effect of loneliness and depression on subjective wellbeing,

E(Yz) =00+ 0;cum(a) + 6,cum(m), (@))

and a linear marginal structural model for the effect of loneliness on depression,

202 UYOJe|\| 90 UO Josn osed |3 Je sexa] Jo AUSIeAuN auL Aq €900/ 16/S/6 L/101e/qsssiljwod dno-olwspeoe)/:sdjy Wolj papeojumoq



Mediation Analysis 933
E{M;(®}=Po+ pravg{a(n}. (5)

Estimation is carried out by using inverse probability of treatment weights as described above
with baseline adjustment for age, gender, ethnicity, marital status, education, income and base-
line depressive symptoms, social support, loneliness, subjective wellbeing, psychiatric conditions
and psychiatric medications as baseline confounders V, and with control for time varying sub-
jective wellbeing, social support, psychiatric conditions and psychiatric medications as time
varying confounders L(f). Standard errors and confidence intervals for the direct and indirect
effects were obtained by bootstrapping. Decisions about confounding control were made on sub-
stantive grounds and include most known confounders of the loneliness—depression, loneliness—
subjective wellbeing and depression—subjective wellbeing relationships (Cacioppo et al., 2009;
VanderWeele et al., 2011, 2012). The estimates that were obtained by fitting model (5) were
0y =1.85 (standard error se=0.395),6; =—0.091 (se=0.039) and 6, =—0.092 (se =0.044). The
estimates that were obtained by fitting model (4) were 8y =0.14 (se =0.35) and 31 =0.36 (se=
0.061). As can be seen from the standard errors, all coefficients in both models were statistically
significantly different from 0 except the intercept (3,0 in the mediator model. If we consider
the direct and indirect effects for a 1-standard-deviation change in loneliness across all time
points so that a(f) =a™(¢) + 1 for all three exposure periods then we have from Section 4 that the
interventional direct effect is given by { E(Yag,. |v) — E(Ya+Gaz) } = Bya{cum(a) — cum(a™)} =
301 =—0.27 (95% confidence interval (CI) — 0.65, — 0.07) and the interventional indirect ef-
fect is given by { E(Ys6,) — E(Yagz )} =£102T =351602=—0.10 (95% CI — 0.20,0.00). We can
sum the direct and indirect effects to obtain an overall effect of loneliness on subjective well-
being for a 1-standard-deviation change in loneliness across all time points and this gives
—0.37(95% CI—0.70, —0.22). The overall effect is the effect on subjective wellbeing of set-
ting loneliness to the high trajectory and depression to a random draw from what it would have
been on the high loneliness trajectory versus setting loneliness to the lower trajectory and de-
pression to a random draw from what it would have been on the lower loneliness trajectory. The
interventional direct effect is the effect on subjective wellbeing of setting loneliness to the high
trajectory and depression to a random draw from what it would have been on the lower loneliness
trajectory versus setting loneliness to the lower trajectory and depression to a random draw from
what it would have been on the lower loneliness trajectory. The interventional indirect effect is
the effect on subjective wellbeing of setting loneliness to the high trajectory and depression to a
random draw from what it would have been on the high loneliness trajectory versus setting lone-
liness to the high trajectory and depression to a random draw from what it would have been on
the lower loneliness trajectory. Thus, of the overall effect of loneliness on subjective wellbeing,
—0.37(95% CI—0.70, —0.22), about a quarter of this, —0.10 (95% CI — 0.20, 0.00), seems to be
mediated by affecting depressive symptoms. The depressive symptoms brought on by loneliness
thus does seem to be an important mechanism for the effect of loneliness on subjective wellbeing,
but there appear to be other important pathways as well, independent of depression, which are
related to subjective assessment of wellbeing or that quality of life is poorer when one is lonely.

7. Discussion

In this paper we have considered methods for time varying exposures and mediators. One of the
challenges here was the presence of mediator—outcome confounders affected by the exposure.
This in general leads to lack of non-parametric identification of longitudinal analogues of
natural direct and indirect effects. However, we showed in this paper that it is still possible to
identify interventional analogues of natural direct and indirect effects and these can be used for

202 UYOJe|\| 90 UO Josn osed |3 Je sexa] Jo AUSIeAuN auL Aq €900/ 16/S/6 L/101e/qsssiljwod dno-olwspeoe)/:sdjy Wolj papeojumoq



934 T. J. VanderWeele and E. J. Tchetgen Tchetgen

effect decomposition. The empirical expression that was used for identification we referred to as
the mediational g-formula. When identified, these interventional direct and indirect effects do
reduce to the natural direct and indirect effects where there is no mediator—outcome confounder
affected by exposure (e.g. when there are no time varying confounders) but the interventional
analogues can be estimated in a broader range of settings even when natural direct and indirect
effects are not identified with the data. The methods in this paper thereby extend those in
prior literature to settings with longitudinal data and exposures and mediators that vary over
time. Such rich longitudinal data can potentially increase power in the analysis of direct and
mediated effects and help to ensure that questions of temporality in thinking about causal effects
are clearer. We have shown how the developments in this paper can be implemented by fitting
two marginal structural models and how this constitutes a fairly general and flexible approach,
as also discussed further in the on-line supplement. We have also shown how our mediational
g-formula can be used to formalize and clarify the interpretation of effect estimates that come
from longitudinal linear structural equation models that are common in the social sciences. But
these two contexts are only two settings in which the approach that we developed here by using
the mediational g-formula can be implemented. We believe that the mediational g-formula will
lie at the foundation of the development of many subsequent methods for mediational analysis
with longitudinal data.

Future research on this topic could develop a parametric approach to the mediation g-formula
to try to increase power or could develop doubly robust estimators for the interventional direct
and indirect effects identified by the mediational g-formula to improve both power and robust-
ness. Recent work has also shown that, in the context of both mediation and interaction, a total
effect can be decomposed into four components: that due to just mediation, that due to just
interaction, that due to both and that due to neither (VanderWeele, 2014). In Appendix A and
the on-line supplement we show how this four-way decomposition can also be extended, using
very similar ideas to those developed above with marginal structural models, to the context
of four-way decompositions for time varying exposures and mediators. The approach that we
have developed here provides a very general framework for mediation analysis with longitudinal
data.
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Appendix A: Four-way decomposition for mediation and interaction with time
varying exposures and mediators
VanderWeele (2014) showed that with a single binary exposure and mediator it was possible to decompose

a total effect Y; — Y} into four components: that due to just mediation, that due to just interaction, that
due to both and that due to neither,

Y1 —Yo= (Y10 — Yo0) + (Y11 — Y10 — Yo1 + Yo0) (Mo) + (Y11 — Y10 — Yo1 + Yo0) (M1 — Mp) + (Yo1 — Yo0) (M1 — Mp).

The first component, (Y19 — Yoo), is the controlled direct effect, due to neither mediation nor interaction;
the second component, (Y, — Y10 — Yo1 + Yoo) (M)), was referred to as the reference interaction due to just
interaction, not mediation; the third component, (Y;; — Y19 — Yo1 + Yoo) (M| — My), was referred to as the
mediated interaction, due to both mediation and interaction, and the fourth component (Yy; — Yo0) (M, —
My) = Youm, — You, is the pure indirect effect, due to just mediation. See VanderWeele (2014) for further
discussion and interpretation. These four components are identified under the same assumptions (a)—(d)
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in the text for identifying natural direct and indirect effects. The controlled direct effect and the reference
interaction sum to the natural direct effect Y, — You,. The mediated interaction and the pure indirect
effect sum to the natural indirect effect Yy, — Y14, (VanderWeele, 2014).

The decomposition can also be generalized to an arbitrary exposure and mediator, with the controlled
direct effect fixing the mediator to an arbitrary level m*, not necessarily 0. We then have

Ya - Ya* = (Yam* - Ya*m*) + Z (Yam - Ya*m - Yam* + Ya*m*)l(Ma* =m)
m

+ Z (Yam - Ya*m){l(Ma =m) - I(Mn* Zm)} + (Ya*M,, - Ya*Ma* )

m

Here we show that a similar four-way decomposition pertains to the interventional overall effect, Y;5, —
Y;¢,.» given in the text. Specifically, we have that, for any a, a* and m*,
Yici = Yaoio =Yag, —Yac) T Yac, — Yaia)
=g, —Yico)+Yac, —Yicn) T Yag, — Yoc, — Yics +Yirca)
= Yamr — Yauir) {6, — Yaria) — Vame — Yaoiin)
+ Yag, —Yarc, — Yaco tYarGo) + Yo, — Yacu)- (6)

This can be further rewritten as
Ve = Yaoe) + 22 {(Yarm = Yar) = Yane = Yo} (G =)
+ 3 {(Yan — Yori) WG iy =111) — Y — Youri) VG =1) } + Yz, — YarG)
= Yane = Yair) + > Vam = Yaoi — Yamr + Yo ) 1(G e = 1)
+ ;(Yﬁn — Yo {1(Gay=m) —1(Ga =m)} + Vi, — YaGo)- @)

This expression has the same form of the four-way decomposition for a single time-fixed exposure and
mediator. The four terms in either equation (6) or equation (7) might thus once again be referred to as
the controlled direct effect, the reference interaction, the mediated interaction and the interventional pure
direct effect. Similar decompositions hold when conditioning on V =v in the random draw from M, i.e.
for decomposing Yc.1, — Yo o

From the former expression (6), it is clear that each of the four components of the four-way decompo-
sition can be identified on average under the same confounding assumptions (a’)—(c’) in the text for the
interventional direct and indirect effects since each term involves expectations of the form of either E(Yz,+)
or of E(Y;s,,), which, as noted in the text, are identified from the data under assumptions (a’)—(c’).

Suppose now that the marginal structural models above, allowing for exposure-mediator interaction,
were fitted to the data under assumptions (a’)—(c'):

E(Yz) =00+ 6,cum(a) + 6,cum(m) + 6;cum(a)cum(m),
E{M; (1)} =Po(t) + Bi(Dave{a()}.

We have E(Yz) directly from the marginal structural model for the outcome and it is shown in the on-line
supplement that

E(Y;,.) =00+ 61cum(a) + 6, ( ; [Bo(t) + B1 (navg{a* (0}]) + 63 cum(a) ( ; [Bo () + B (1 avg{a™ (t)}])
(<T (<T

and this gives the expectations of all counterfactual quantities that are needed for each of the four com-
ponents. We thus have that the controlled direct effect is given by

CDE@i*): = E(Ya+ — Yauriv)
= {0, + 03cum (™) }{cum(a@) — cum(a*)}.

The reference interaction is given by
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INTyr (1) := E{3(Yan — Yaris — Yame + Yo )1 (G =10) }

m

=E{(Ya5, —Yz6,) — Yan — Yauir) }

=0, {cum(a) — cum(a*)} + 6;{cum(a) — cum(a*)} ( S [Bo(t) + B (¢) avg{a™* (t)}]>

t<T
— {6, +0;cum(i*) }{cum(a) — cum(a*)}

=0;{cum(a@) — cum(a*)} ( S [Bo(0) + B (t)avg{a* (t)}]) — 63 cum (i *){cum(a) — cum(a*)}.

1<T
The mediated interaction is given by
INTwea :=E[Y. (Y — Yﬁ*rﬁ){l(G_(ﬂv =m)—1(Gz=m)}]

=EW, —Yig, —Yoé, +Yrc,)
={6,+6scum(a)} ; Bi(lavg{a(n} —avg{a* (D }]

— {0+ 03 cum(@*)} ; Bi®Olave{a(t)} —aveg{a*(H}]
(<T

=0;{cum(a) — cum(a*)} ; Bi@lavg{a®} —avg{a*(t)}].
(<T

And the interventional pure indirect effect is given by

PIE:=E(Ys6, — Yac,.)

a

={6, + 05 cum(a*)} ; Bi@®lave{a)} —avg{a* (}].
(<T

If By (r) = By and B3, (1) = B are assumed to be constant, and a™(r) =0 and a(r) =1 for all 7, and the reference
level for the mediator is selected as 7i2* =0 the expressions simplify considerably to

CDE(m™)=6,T,
INT o (m™*) = 50577,
INTnea = 316577,

PIE=3,6,T.

These expressions are analogous to those given in VanderWeele (2014) for a single time-fixed exposure
and mediator. Note here that, once again, the controlled direct effect and the reference interaction sum
to the interventional direct effect that is given in the on-line supplement, 8, T + 3,05 T>. And the mediated
interaction and the interventional pure indirect effect sum to the interventional indirect effect given there,
BiT(0>+ 05T).
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‘Online supplement for “Mediation analysis with time-varying exposures and mediators™’.
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