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Abstract
When estimating causal effects using observational data, it is desirable to replicate a randomized
experiment as closely as possible by obtaining treated and control groups with similar covariate
distributions. This goal can often be achieved by choosing well-matched samples of the original
treated and control groups, thereby reducing bias due to the covariates. Since the 1970’s, work on
matching methods has examined how to best choose treated and control subjects for comparison.
Matching methods are gaining popularity in fields such as economics, epidemiology, medicine, and
political science. However, until now the literature and related advice has been scattered across
disciplines. Researchers who are interested in using matching methods–or developing methods
related to matching–do not have a single place to turn to learn about past and current research. This
paper provides a structure for thinking about matching methods and guidance on their use, coalescing
the existing research (both old and new) and providing a summary of where the literature on matching
methods is now and where it should be headed.
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1 Introduction
One of the key benefits of randomized experiments for estimating causal effects is that the
treated and control groups are guaranteed to be only randomly different from one another on
all background covariates, both observed and unobserved. Work on matching methods has
examined how to replicate this as much as possible for observed covariates with observational
(non-randomized) data. Since early work in matching, which began in the 1940’s, the methods
have increased in both complexity and use. However, while the field is expanding, there has
been no single source of information for researchers interested in an overview of the methods
and techniques available, nor a summary of advice for applied researchers interested in
implementing these methods. In contrast, the research and resources have been scattered across
disciplines such as statistics (Rosenbaum, 2002; Rubin, 2006), epidemiology (Brookhart et
al., 2006), sociology (Morgan and Harding, 2006), economics (Imbens, 2004), and political
science (Ho et al., 2007). This paper coalesces the diverse literature on matching methods,
bringing together the original work on matching methods–of which many current researchers
are not aware–and tying together ideas across disciplines. In addition to providing guidance
on the use of matching methods, the paper provides a view of where research on matching
methods should be headed.
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We define “matching” broadly to be any method that aims to equate (or “balance”) the
distribution of covariates in the treated and control groups. This may involve 1:1 matching,
weighting, or subclassification. The use of matching methods is in the broader context of the
careful design of non-experimental studies (Rosenbaum, 1999, 2002; Rubin, 2007). While
extensive time and effort is put into the careful design of randomized experiments, relatively
little effort is put into the corresponding “design” of non-experimental studies. In fact, precisely
because non-experimental studies do not have the benefit of randomization, they require even
more careful design. In this spirit of design, we can think of any study aiming to estimate the
effect of some intervention as having two key stages: (1) design, and (2) outcome analysis.
Stage (1) uses only background information on the individuals in the study, designing the non-
experimental study as would be a randomized experiment, without access to the outcome
values. Matching methods are a key tool for Stage (1). Only after Stage (1) is finished does
Stage (2) begin, comparing the outcomes of the treated and control individuals. While matching
is generally used to estimate causal effects, it is also sometimes used for non-causal questions,
for example to investigate racial disparities (Schneider et al., 2004).

Alternatives to matching methods include adjusting for background variables in a regression
model, instrumental variables, structural equation modeling, or selection models. Matching
methods have a few key advantages over those other approaches. First, matching methods
should not be seen in conflict with regression adjustment and in fact the two methods are
complementary and best used in combination. Second, matching methods highlight areas of
the covariate distribution where there is not sufficient overlap between the treatment and
control groups, such that the resulting treatment effect estimates would rely heavily on
extrapolation. Selection models and regression models have been shown to perform poorly in
situations where there is insufficient overlap, but their standard diagnostics do not involve
checking this overlap (Dehejia and Wahba, 1999, 2002; Glazerman et al., 2003). Matching
methods in part serve to make researchers aware of the quality of resulting inferences. Third,
matching methods have straightforward diagnostics by which their performance can be
assessed.

The paper proceeds as follows. The remainder of Section 1 provides an introduction to
matching methods and the scenarios considered, including some of the history and theory
underlying matching methods. Sections 2–5 provide details on each of the steps involved in
implementing matching: defining a distance measure, doing the matching, diagnosing the
matching, and then estimating the treatment effect after matching. The paper concludes with
suggestions for future research and practical guidance in Section 6.

1.1 Two Settings
Matching methods are commonly used in two types of settings. The first is one in which the
outcome values are not yet available and matching is used to select subjects for follow-up (e.g.,
Reinisch et al., 1995; Stuart and Ialongo, 2009). It is particularly relevant for studies with cost
considerations that prohibit the collection of outcome data for the full control group. This was
the setting for most of the original work in matching methods, particularly the theoretical
developments, which compared the benefits of selecting matched versus random samples of
the control group (Althauser and Rubin, 1970; Rubin, 1973a,b). The second setting is one in
which all of the outcome data is already available, and the goal of the matching is to reduce
bias in the estimation of the treatment effect.

A common feature of matching methods, which is automatic in the first setting but not the
second, is that the outcome values are not used in the matching process. Even if the outcome
values are available at the time of the matching, the outcome values should not be used in the
matching process, to preclude the selection of a matched sample that leads to a desired result–
or even the appearance of doing so (Rubin, 2007). The matching can thus be done multiple
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times and the matched samples with the best balance–the most similar treated and control
groups–chosen as the final matched samples; this is similar to the design of a randomized
experiment where a particular randomization may be rejected if it yields poor covariate balance
(Greevy et al., 2004; Hill et al., 1999).

This paper focuses on settings with a treatment defined at some particular point in time,
covariates measured at (or relevant to) some period of time before the treatment, and outcomes
measured after the treatment. It does not consider more complex longitudinal settings where
individuals may go in and out of the treatment group, or where the treatment assignment date
is undefined for the control group. Methods such as marginal structural models (Robins et
al., 2000) or balanced risk set matching (Li et al., 2001) are useful in those settings.

1.2 Notation and Background: Estimating Causal Effects
As first formalized in Rubin (1974), the estimation of causal effects, whether from a
randomized experiment or a non-experimental study, is inherently a comparison of potential
outcomes. In particular, the causal effect for individual i is the comparison of individual i’s
outcome if individual i receives the treatment (the potential outcome under treatment), Yi(1),
and individual i’s outcome if individual i receives the control (the potential outcome under
control), Yi(0). For simplicity, we use the term “individual” to refer to the units that receive
the treatment of interest, but the formulation would stay the same if the units were schools or
communities. The “fundamental problem of causal inference” (Holland, 1986) is that, for each
individual, we can observe only one of these potential outcomes, because each unit (each
individual at a particular point in time) will receive either treatment or control, not both. The
estimation of causal effects can thus be thought of as a missing data problem (Rubin, 1976a),
where we are interested in predicting the unobserved potential outcomes.

For efficient causal inference and good estimation of the unobserved potential outcomes, we
would like to compare treated and control groups that are as similar as possible. If the groups
are very different, the prediction of Y (1) for the control group will be made using information
from individuals who look very different from themselves, and likewise for the prediction of
Y (0) for the treated group. A number of authors, including Cochran and Rubin (1973); Rubin
(1973a,b, 1979); Heckman et al. (1998b); Rubin and Thomas (2000), and Rubin (2001), have
shown that methods such as linear regression adjustment can actually increase bias in the
estimated treatment effect when the true relationship between the covariate and outcome is
even moderately non-linear, especially when there are large differences in the means and
variances of the covariates in the treated and control groups.

Randomized experiments use a known randomized assignment mechanism to ensure “balance”
of the covariates between the treated and control groups: The groups will be only randomly
different from one another on all covariates, observed and unobserved. In non-experimental
studies, we must posit an assignment mechanism, which determines which individuals receive
treatment and which receive control. A key assumption in non-experimental studies is that of
strongly ignorable treatment assignment (Rosenbaum and Rubin, 1983b) which implies that
(1) treatment assignment (T) is independent of the potential outcomes (Y (0), Y (1)) given the
covariates (X): T ⊥ Y (0), Y (1))|X, and (2) there is a positive probability of receiving each
treatment for all values of X: 0 < P(T = 1|X) < 1 for all X. The first component of the definition
of strong ignorability is sometimes termed “ignorable,” “no hidden bias,” or “unconfounded.”
Weaker versions of the ignorability assumption are sufficient for some quantities of interest,
discussed further in Imbens (2004). This assumption is often more reasonable than it may sound
at first since matching on or controlling for the observed covariates also matches on or controls
for the unobserved covariates, in so much as they are correlated with those that are observed.
Thus, the only unobserved covariates of concern are those unrelated to the observed covariates.
Analyses can be done to assess sensitivity of the results to the existence of an unobserved
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confounder related to both treatment assignment and the outcome (see Section 6.1.2). Heller
et al. (2009) also discuss how matching can make effect estimates less sensitive to an
unobserved confounder, using a concept called “design sensitivity.” An additional assumption
is the Stable Unit Treatment Value Assumption (SUTVA; Rubin, 1980), which states that the
outcomes of one individual are not affected by the treatment assignment of any other
individuals. While not always plausible–for example in school settings where treatment and
control children may interact, leading to “spillover” effects–the plausibility of SUTVA can
often be improved by design, such as by reducing interactions between the treated and control
groups. Recent work has also begun thinking about how to relax this assumption in analyses
(Hong and Raudenbush, 2006; Sobel, 2006; Hudgens and Halloran, 2008).

To formalize, using notation similar to that in Rubin (1976b), we consider two populations,
Pt and Pc, where the subscript t refers to a group exposed to the treatment and c refers to a
group exposed to the control. Covariate data on p pre-treatment covariates is available on
random samples of sizes Nt and Nc from Pt and Pc. The means and variance covariance matrix
of the p covariates in group i are given by μi and Σi, respectively (i = t, c). For individual j, the
p covariates are denoted by Xj, treatment assignment by Tj (Tj = 0 or 1), and the observed
outcome by Yj. Without loss of generality we assume Nt < Nc.

To define the treatment effect, let E(Y (1)|X) = R1(X) and E(Y (0)|X) = R0(X). In the matching
context effects are usually defined as the difference in potential outcomes, τ(x) = R1(x) −
R0(x), although other quantities, such as odds ratios, are also sometimes of interest. It is often
assumed that the response surfaces, R0(x) and R1(x), are parallel, so that τ(x) = τ for all x. If the
response surfaces are not parallel (i.e., the effect varies), an average effect over some population
is generally estimated. Variation in effects is particularly relevant when the estimands of
interest are not difference in means, but rather odds ratios or relative risks, for which the
conditional and marginal effects are not necessarily equal (Austin, 2007; Lunt et al., 2009).
The most common estimands in non-experimental studies are the “average effect of the
treatment on the treated” (ATT), which is the effect for those in the treatment group, and the
“average treatment effect” (ATE), which is the effect on all individuals (treatment and control).
See Imbens (2004); Kurth et al. (2006) and Imai et al. (2008) for further discussion of these
distinctions. The choice between these estimands will likely involve both substantive reasons
and data availability, as further discussed in Section 6.2.

1.3 History and theoretical development of matching methods
Matching methods have been in use since the first half of the 20th Century (e.g., Greenwood,
1945; Chapin, 1947), however a theoretical basis for these methods was not developed until
the 1970’s. This development began with papers by Cochran and Rubin (1973) and Rubin
(1973a,b) for situations with one covariate and an implicit focus on estimating the ATT.
Althauser and Rubin (1970) provides an early and excellent discussion of some practical issues
associated with matching: how large the control “reservoir” should be to get good matches,
how to define the quality of matches, how to define a “close-enough” match. Many of the issues
identified in that work are topics of continuing debate and discussion. The early papers showed
that when estimating the ATT, better matching scenarios include situations with many more
control than treated individuals, small initial bias between the groups, and smaller variance in
the treatment group than control group.

Dealing with multiple covariates was a challenge due to both computational and data problems.
With more than just a few covariates it becomes very difficult to find matches with close or
exact values of all covariates. For example, Chapin (1947) finds that with initial pools of 671
treated and 523 controls there are only 23 pairs that match exactly on six categorical covariates.
An important advance was made in 1983 with the introduction of the propensity score, defined
as the probability of receiving the treatment given the observed covariates (Rosenbaum and
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Rubin, 1983b). The propensity score facilitates the construction of matched sets with similar
distributions of the covariates, without requiring close or exact matches on all of the individual
variables.

In a series of papers in the 1990’s, Rubin and Thomas (1992a,b, 1996) provided a theoretical
basis for multivariate settings with affinely invariant matching methods and ellipsoidally
symmetric covariate distributions (such as the normal or t-distribution), again focusing on
estimating the ATT. Affinely invariant matching methods, such as propensity score or
Mahalanobis metric matching, are those that yield the same matches following an affine (linear)
transformation of the data. Matching in this general setting is shown to be Equal Percent Bias
Reducing (EPBR; Rubin, 1976b). Rubin and Stuart (2006) later showed that the EPBR feature
also holds under much more general settings, in which the covariate distributions are
discriminant mixtures of ellipsoidally symmetric distributions. EPBR methods reduce bias in
all covariate directions (i.e., makes the covariate means closer) by the same amount, ensuring
that if close matches are obtained in some direction (such as the propensity score), then the
matching is also reducing bias in all other directions. The matching thus cannot be increasing
bias in an outcome that is a linear combination of the covariates. In addition, matching yields
the same percent bias reduction in bias for any linear function of X if and only if the matching
is EPBR.

Rubin and Thomas (1992b) and Rubin and Thomas (1996) obtain analytic approximations for
the reduction in bias on an arbitrary linear combination of the covariates (e.g., the outcome)
that can be obtained when matching on the true or estimated discriminant (or propensity score)
with normally distributed covariates. In fact the approximations hold remarkably well even
when the distributional assumptions are not satisfied (Rubin and Thomas, 1996). The
approximations in Rubin and Thomas (1996) can be used to determine in advance the bias
reduction that will be possible from matching, based on the covariate distributions in the treated
and control groups, the size of the initial difference in the covariates between the groups, the
original sample sizes, the number of matches desired, and the correlation between the
covariates and the outcome. Unfortunately these approximations are rarely used in practice,
despite their ability to help researchers quickly assess whether their data will be useful for
estimating the causal effect of interest.

1.4 Steps in implementing matching methods
Matching methods have four key steps, with the first three representing the “design” and the
fourth the “analysis:”

1. Defining “closeness”: the distance measure used to determine whether an individual
is a good match for another,

2. Implementing a matching method, given that measure of closeness,

3. Assessing the quality of the resulting matched samples, and perhaps iterating with
Steps (1) and (2) until well-matched samples result, and

4. Analysis of the outcome and estimation of the treatment effect, given the matching
done in Step (3).

The next four sections go through these steps one at a time, providing an overview of
approaches and advice on the most appropriate methods.
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2 Defining closeness
There are two main aspects to determining the measure of distance (or “closeness”) to use in
matching. The first involves which covariates to include, and the second involves combining
those covariates into one distance measure.

2.1 Variables to Include
The key concept in determining which covariates to include in the matching process is that of
strong ignorability. As discussed above, matching methods, and in fact most non-experimental
study methods, rely on ignorability, which assumes that there are no unobserved differences
between the treatment and control groups, conditional on the observed covariates. To satisfy
the assumption of ignorable treatment assignment, it is important to include in the matching
procedure all variables known to be related to both treatment assignment and the outcome
(Rubin and Thomas, 1996; Heckman et al., 1998b; Glazerman et al., 2003; Hill et al., 2004).
Generally poor performance is found of methods that use a relatively small set of “predictors
of convenience,” such as demographics only (Shadish et al., 2008). When matching using
propensity scores, detailed below, there is little cost to including variables that are actually
unassociated with treatment assignment, as they will be of little influence in the propensity
score model. Including variables that are actually unassociated with the outcome can yield
slight increases in variance. However, excluding a potentially important confounder can be
very costly in terms of increased bias. Researchers should thus be liberal in terms of including
variables that may be associated with treatment assignment and/or the outcomes. Some
examples of matching have 50 or even 100 covariates included in the procedure (e.g., Rubin,
2001). However, in small samples it may not be possible to include a very large set of variables.
In that case priority should be given to variables believed to be related to the outcome, as there
is a higher cost in terms of increased variance of including variables unrelated to the outcome
but highly related to treatment assignment (Brookhart et al., 2006). Another effective strategy
is to include a small set of covariates known to be related to the outcomes of interest, do the
matching, and then check the balance on all of the available covariates, including any additional
variables that remain particularly unbalanced after the matching. To avoid allegations of
variable selection based on estimated effects, it is best if the variable selection process is done
without using the observed outcomes, and instead is based on previous research and scientific
understanding (Rubin, 2001).

One type of variable that should not be included in the matching process are those that may
have been affected by the treatment of interest (Rosenbaum, 1984; Frangakis and Rubin,
2002; Greenland, 2003). This is especially important when the covariates, treatment indicator,
and outcomes are all collected at the same point in time. If it is deemed to be critical to control
for a variable potentially affected by treatment assignment, it is better to exclude that variable
in the matching procedure and include it in the analysis model for the outcome (as in Reinisch
et al., 1995).1

Another challenge that potentially arises are variables that are fully (or nearly fully) predictive
of treatment assignment. Excluding such a variable should be done only with great care, with
belief that the problematic variable is completely unassociated with the outcomes of interest
and that the ignorability assumption will still hold. More commonly, such a variable indicates
a fundamental problem in estimating the effect of interest, whereby it may not be possible to
separate out the effect of the treatment of interest from this problematic variable using the data

1The method is mis-stated in the footnote in Table 1 of that paper. In fact, the potential confounding variables were not used in the
matching procedure, but were utilized in the outcome analysis (D.B. Rubin, personal communication).
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at hand. For example, if all adolescent heavy drug users are also heavy drinkers, it will be
impossible to separate out the effect of heavy drug use from the effect of heavy drinking.

2.2 Distance Measures
The next step is to define the “distance:” a measure of the similarity between two individuals.
There are four primary ways to define the distance Dij between individuals i and j for matching,
all of which are affinely invariant:

1. Exact:

2. Mahalanobis:

If interest is in the ATT, Σ is the variance covariance matrix of X in the full control
group; if interest is in the ATE then Σ is the variance covariance matrix of X in the
pooled treatment and full control groups. If X contains categorical variables they
should be converted to a series of binary indicators, although the distance works best
with continuous variables.

3. Propensity score:

where ek is the propensity score for individual k, defined in detail below.

4. Linear propensity score:

Rosenbaum and Rubin (1985b); Rubin and Thomas (1996) and Rubin (2001) have
found that matching on the linear propensity score can be particularly effective in
terms of reducing bias.

Below we use “propensity score” to refer to either the propensity score itself or the linear
version.

Although exact matching is in many ways the ideal (Imai et al., 2008), the primary difficulty
with the exact and Mahalanobis distance measures is that neither works very well when X is
high dimensional. Requiring exact matches often leads to many individuals not being matched,
which can result in larger bias than if the matches are inexact but more individuals remain in
the analysis (Rosenbaum and Rubin, 1985b). A recent advance, coarsened exact matching
(CEM), can be used to do exact matching on broader ranges of the variables; for example,
using income categories rather than a continuous measure (Iacus et al., 2009). The Mahalanobis
distance can work quite well when there are relatively few covariates (fewer than 8; Rubin,
1979; Zhao, 2004), but it does not perform as well when the covariates are not normally
distributed or there are many covariates (Gu and Rosenbaum, 1993). This is likely because
Mahalanobis metric matching essentially regards all interactions among the elements of X as
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equally important; with more covariates Mahalanobis matching thus tries to match more and
more of these multiway interactions.

A major advance was made in 1983 with the introduction of propensity scores (Rosenbaum
and Rubin, 1983b). Propensity scores summarize all of the covariates into one scalar: the
probability of being treated. The propensity score for individual i is defined as the probability
of receiving the treatment given the observed covariates: ei(Xi) = P(Ti = 1|Xi). There are two
key properties of propensity scores. The first is that propensity scores are balancing scores: At
each value of the propensity score, the distribution of the covariates X defining the propensity
score is the same in the treated and control groups. Thus, grouping individuals with similar
propensity scores replicates a mini-randomized experiment, at least with respect to the
observed covariates. Second, if treatment assignment is ignorable given the covariates, then
treatment assignment is also ignorable given the propensity score. This justifies matching based
on the propensity score rather than on the full multivariate set of covariates. Thus, when
treatment assignment is ignorable, the difference in means in the outcome between treated and
control individuals with a particular propensity score value is an unbiased estimate of the
treatment effect at that propensity score value. While most of the propensity score results are
in the context of finite samples and the settings considered by Rubin and Thomas (1992a,
1996), Abadie and Imbens (2009a) discuss the asymptotic properties of propensity score
matching.

The distance measures described above can also be combined, for example doing exact
matching on key covariates such as race or gender followed by propensity score matching
within those groups. When exact matching on even a few variables is not possible because of
sample size limitations, methods that yield “fine balance” (e.g., the same proportion of African
American males in the matched treated and control groups) may be a good alternative
(Rosenbaum et al., 2007). If the key covariates of interest are continuous, Mahalanobis
matching within propensity score calipers (Rubin and Thomas, 2000), defines the distance
between individuals i and j as:

where c is the caliper, Z is the set of “key covariates”, and Σ is the variance covariance matrix
of Z. This will yield matches that are relatively well matched on the propensity score and
particularly well matched on Z. Z often consists of pre-treatment measures of the outcome,
such as baseline test scores in educational evaluations. Rosenbaum and Rubin (1985b) discuss
the choice of caliper size, generalizing results from Table 2.3.1 of Cochran and Rubin
(1973). When the variance of the linear propensity score in the treatment group is twice as
large as that in the control group, a caliper of 0.2 standard deviations removes 98% of the bias
in a normally distributed covariate. If the variance in the treatment group is much larger than
that in the control group, smaller calipers are necessary. Rosenbaum and Rubin (1985b)
generally suggest a caliper of 0.25 standard deviations of the linear propensity score.

A more recently developed distance measure is the “prognosis score” (Hansen, 2008).
Prognosis scores are essentially the predicted outcome each individual would have under the
control condition. The benefit of prognosis scores is that they take into account the relationship
between the covariates and the outcome; the drawback is that it requires a model for that
relationship. Since it thus does not have the clear separation of the design and analysis stages
that we advocate here, we focus instead on other approaches, but it is a potentially important
advance in the matching literature.
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2.2.1 Propensity score estimation and model specification—In practice, the true
propensity scores are rarely known outside of randomized experiments and thus must be
estimated. Any model relating a binary variable to a set of predictors can be used. The most
common for propensity score estimation is logistic regression, although non-parametric
methods such as boosted CART and generalized boosted models (gbm) often show very good
performance (McCaffrey et al., 2004; Setoguchi et al., 2008; Lee et al., 2009).

The model diagnostics when estimating propensity scores are not the standard model
diagnostics for logistic regression or CART. With propensity score estimation, concern is not
with the parameter estimates of the model, but rather with the resulting balance of the covariates
(Augurzky and Schmidt, 2001). Because of this, standard concerns about collinearity do not
apply. Similarly, since they do not use covariate balance as a criterion, model fit statistics
identifying classification ability (such as the c-statistic) or stepwise selection models are not
helpful for variable selection (Rubin, 2004; Brookhart et al., 2006; Setoguchi et al., 2008).
One strategy that is helpful is to examine the balance of covariates (including those not
originally included in the propensity score model), their squares, and interactions in the
matched samples. If imbalance is found on particular variables or functions of variables, those
terms can be included in a re-estimated propensity score model, which should improve their
balance in the subsequent matched samples (Rosenbaum and Rubin, 1984; Dehejia and Wahba,
2002).

Research indicates that mis-estimation of the propensity score (e.g., excluding a squared term
that is in the true model) is not a large problem, and that treatment effect estimates are more
biased when the outcome model is mis-specified than when the propensity score model is mis-
specified (Drake, 1993; Dehejia and Wahba, 1999, 2002; Zhao, 2004). This may in part be
because the propensity score is used only as a tool to get covariate balance–the accuracy of the
model is less important as long as balance is obtained. Thus, the exclusion of a squared term,
for example, may have less severe consequences for a propensity score model than it does for
the outcome model, where interest is in interpreting a particular regression coefficient (that on
the treatment indicator). However, these evaluations are fairly limited; for example, Drake
(1993) considers only two covariates. Future research should involve more systematic
evaluations of propensity score estimation, perhaps through more sophisticated simulations as
well as analytic work, and consideration should include how the propensity scores will be used,
for example in weighting versus subclassification.

3 Matching Methods
Once a distance measure has been selected, the next step is to use that distance in doing the
matching. In this section we provide an overview of the spectrum of matching methods
available. The methods primarily vary in terms of the number of individuals that remain after
matching and in the relative weights that different individuals receive. One way in which
propensity scores are commonly used is as a predictor in the outcome model, where the set of
individual covariates is replaced by the propensity score and the outcome models run in the
full treated and control groups (Weitzen et al., 2004). Unfortunately the simple use of this
method is not an optimal use of propensity scores as it does not take advantage of the balancing
property of propensity scores: If there is imbalance on the original covariates there will also
be imbalance on the propensity score, resulting in the same degree of model extrapolation as
with the full set of covariates. However, if the model regressing the outcome on the treatment
indicator and the propensity score is correctly specified or if it includes non-linear functions
of the propensity score (such as quantiles or splines) and their interaction with the treatment
indicator, then this can be an effective approach, with links to subclassification (Schafer and
Kang, 2008). Since this method does not have the clear “design” aspect of matching, we do
not discuss it further.
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3.1 Nearest neighbor matching
One of the most common, and easiest to implement and understand, methods is k:1 nearest
neighbor matching (Rubin, 1973a). This is generally the most effective method for settings
where the goal is to select individuals for follow-up. Nearest neighbor matching nearly always
estimates the ATT, as it matches control individuals to the treated group and discards controls
who are not selected as matches.

In its simplest form, 1:1 nearest neighbor matching selects for each treated individual i the
control individual with the smallest distance from individual i. A common complaint regarding
1:1 matching is that it can discard a large number of observations and thus would apparently
lead to reduced power. However, the reduction in power is often minimal, for two main reasons.
First, in a two-sample comparison of means, the precision is largely driven by the smaller group
size (Cohen, 1988). So if the treatment group stays the same size, and only the control group
decreases in size, the overall power may not actually be reduced very much (Ho et al., 2007).
Second, the power increases when the groups are more similar because of the reduced
extrapolation and higher precision that is obtained when comparing groups that are similar
versus groups that are quite different (Snedecor and Cochran, 1980). This is also what yields
the increased power of using matched pairs in randomized experiments (Wacholder and
Weinberg, 1982). Smith (1997) provides an illustration where estimates from 1:1 matching
have lower standard deviations than estimates from a linear regression, even though thousands
of observations were discarded in the matching. An additional concern is that, without any
restrictions, k:1 matching can lead to some poor matches, if for example, there are no control
individuals with propensity scores similar to a given treated individual. One strategy to avoid
poor matches is to impose a caliper and only select a match if it is within the caliper. This can
lead to difficulties in interpreting effects if many treated individuals do not receive a match,
but can help avoid poor matches. Rosenbaum and Rubin (1985a) discuss those trade-offs.

3.1.1 Optimal Matching—One complication of simple (“greedy”) nearest neighbor
matching is that the order in which the treated subjects are matched may change the quality of
the matches. Optimal matching avoids this issue by taking into account the overall set of
matches when choosing individual matches, minimizing a global distance measure
(Rosenbaum, 2002). Generally, greedy matching performs poorly when there is intense
competition for controls, and performs well when there is little competition (Gu and
Rosenbaum, 1993). Gu and Rosenbaum (1993) find that optimal matching does not in general
perform any better than greedy matching in terms of creating groups with good balance, but
does do better at reducing the distance within pairs (p. 413): “…optimal matching picks about
the same controls [as greedy matching] but does a better job of assigning them to treated units.”
Thus, if the goal is simply to find well-matched groups, greedy matching may be sufficient.
However, if the goal is well-matched pairs, then optimal matching may be preferable.

3.1.2 Selecting the number of matches: Ratio Matching—When there are large
numbers of control individuals, it is sometimes possible to get multiple good matches for each
treated individual, called ratio matching (Smith, 1997; Rubin and Thomas, 2000). Selecting
the number of matches involves a bias:variance trade-off. Selecting multiple controls for each
treated individual will generally increase bias since the 2nd, 3rd, and 4th closest matches are,
by definition, further away from the treated individual than is the 1st closest match. On the
other hand, utilizing multiple matches can decrease variance due to the larger matched sample
size. Approximations in Rubin and Thomas (1996) can help determine the best ratio. In settings
where the outcome data has yet to be collected and there are cost constraints, researchers must
also balance cost considerations. More methodological work needs to be done to more formally
quantify the trade-offs involved. In addition, k:1 matching is not optimal since it does not
account for the fact that some treated individuals may have many close matches while others
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have very few. A more advanced form of ratio matching, variable ratio matching, allows the
ratio to vary, with different treated individuals receiving differing numbers of matches (Ming
and Rosenbaum, 2001). Variable ratio matching is related to full matching, described below.

3.1.3 With or without replacement—Another key issue is whether controls can be used
as matches for more than one treated individual; whether the matching should be done “with
replacement” or “without replacement.” Matching with replacement can often decrease bias
because controls that look similar to many treated individuals can be used multiple times. This
is particularly helpful in settings where there are few control individuals comparable to the
treated individuals (e.g., Dehejia and Wahba, 1999). Additionally, when matching with
replacement the order in which the treated individuals are matched does not matter. However,
inference becomes more complex when matching with replacement, because the matched
controls are no longer independent–some are in the matched sample more than once and this
needs to be accounted for in the outcome analysis, for example by using frequency weights.
When matching with replacement it is also possible that the treatment effect estimate will be
based on just a small number of controls; the number of times each control is matched should
be monitored.

3.2 Subclassification, Full Matching, and Weighting
For settings where the outcome data is already available, one apparent drawback of k:1 nearest
neighbor matching is that it does not necessarily use all the data, in that some control
individuals, even some of those with propensity scores in the range of the treatment groups’
scores, are discarded and not used in the analysis. Weighting, full matching, and
subclassification methods instead use all individuals. These methods can be thought of as
giving all individuals (either implicit or explicit) weights between 0 and 1, in contrast with
nearest neighbor matching, in which individuals essentially receive a weight of either 0 or 1
(depending on whether or not they are selected as a match). The three methods discussed here
represent a continuum in terms of the number of groupings formed, with weighting as the limit
of subclassification as the number of observations and subclasses go to infinity (Rubin,
2001) and full matching in between.

3.2.1 Subclassification—Subclassification forms groups of individuals who are similar,
for example as defined by quintiles of the propensity score distribution. It can estimate either
the ATE or the ATT, as discussed further in Section 5. One of the first uses of subclassification
was Cochran (1968), which examined subclassification on a single covariate (age) in
investigating the link between lung cancer and smoking. Cochran (1968) provides analytic
expressions for the bias reduction possible using subclassification on a univariate continuous
covariate; using just five subclasses removes at least 90% of the initial bias due to that covariate.
Rosenbaum and Rubin (1985b) extended that to show that creating five propensity score
subclasses removes at least 90% of the bias in the estimated treatment effect due to all of the
covariates that went into the propensity score. Based on those results, the current convention
is to use 5–10 subclasses. However, with larger sample sizes more subclasses (e.g., 10–20)
may be feasible and appropriate (Lunceford and Davidian, 2004). More work needs to be done
to help determine the optimal number of subclasses: enough to get adequate bias reduction but
not too many that the within-subclass effect estimates become unstable.

3.2.2 Full Matching—A more sophisticated form of subclassification, full matching, selects
the number of subclasses automatically (Rosenbaum, 1991; Hansen, 2004; Stuart and Green,
2008). Full matching creates a series of matched sets, where each matched set contains at least
one treated individual and at least one control individual (and each matched set may have many
from either group). Like subclassification, full matching can estimate either the ATE or the
ATT. Full matching is optimal in terms of minimizing the average of the distances between
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each treated individual and each control individual within each matched set. Hansen (2004)
demonstrates the method in the context of estimating the effect of SAT coaching. In that
example the original treated and control groups had propensity score differences of 1.1 standard
deviations, but the matched sets from full matching differed by only 0.01 to 0.02 standard
deviations. Full matching may thus have appeal for researchers who are reluctant to discard
some of the control individuals but who want to obtain optimal balance on the propensity score.
To achieve efficiency gains, Hansen (2004) also introduces restricted ratios of the number of
treated individuals to the number of control individuals in each matched set.

3.2.3 Weighting adjustments—Propensity scores can also be used directly as inverse
weights in estimates of the ATE, known as inverse probability of treatment weighting (IPTW;
Czajka et al., 1992; Robins et al., 2000; Lunceford and Davidian, 2004). Formally, the weight

, where êk is the estimated propensity score for individual k. This weighting serves
to weight both the treated and control groups up to the full sample, in the same way that survey
sampling weights weight a sample up to a population (Horvitz and Thompson, 1952).

An alternative weighting technique, weighting by the odds, can be used to estimate the ATT
(Hirano et al., 2003). Formally, . With this weight, treated individuals receive
a weight of 1. Control individuals are weighted up to the full sample using the  term, and
then weighted to the treated group using the êi term. In this way both groups are weighted to
represent the treatment group.

A third weighting technique, used primarily in economics, is kernel weighting, which averages
over multiple individuals in the control group for each treated individual, with weights defined
by their distance (Imbens, 2000). Heckman et al. (1997, 1998a,b) describe a local linear
matching estimator that requires specifying a bandwidth parameter. Generally, larger
bandwidths increase bias but reduce variance by putting weight on individuals that are further
away from the treated individual of interest. A complication with these methods is this need
to define a bandwidth or smoothing parameter, which does not generally have an intuitive
meaning; Imbens (2004) provides some guidance on that choice.

A potential drawback of the weighting approaches is that, as with Horvitz-Thompson
estimation, the variance can be very large if the weights are extreme (i.e., if the estimated
propensity scores are close to 0 or 1). If the model is correctly specified and thus the weights
are correct, then the large variance is appropriate. However, a worry is that some of the extreme
weights may be related more to the estimation procedure than to the true underlying
probabilities. Weight trimming, which sets weights above some maximum to that maximum,
has been proposed as one solution to this problem (Potter, 1993; Scharfstein et al., 1999).
However, there is relatively little guidance regarding the trimming level. Because of this
sensitivity to the size of the weights and potential model misspecification, more attention
should be paid to the accuracy of propensity score estimates when the propensity scores will
be used for weighting vs. matching (Kang and Schafer, 2007). Another effective strategy is
doubly-robust methods (Bang and Robins, 2005), which yield accurate effect estimates if either
the propensity score model or the outcome model are correctly specified, as discussed further
in Section 5.

3.3 Assessing Common Support
One issue that comes up for all matching methods is that of “common support.” To this point,
we have assumed that there is substantial overlap of the propensity score distributions in the
two groups, but potentially density differences. However, in some situations there may not be
complete overlap in the distributions. For example, many of the control individuals may be
very different from all of the treatment group members, making them inappropriate as points
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of comparison when estimating the ATT (Austin and Mamdani, 2006). Nearest neighbor
matching with calipers automatically only uses individuals in (or close to) the area of common
support. In contrast, the subclassification and weighting methods generally use all individuals,
regardless of the overlap of the distributions. When using those methods it may be beneficial
to explicitly restrict the analysis to those individuals in the region of common support (as in
Heckman et al., 1997; Dehejia and Wahba, 1999).

Most analyses define common support using the propensity score, discarding individuals with
propensity score values outside the range of the other group. A second method involves
examining the “convex hull” of the covariates, identifying the multi-dimensional space that
allows interpolation rather than extrapolation (King and Zeng, 2006). While these procedures
can help identify who needs to be discarded, when many subjects are discarded it can help the
interpretation of results if it is possible to define the discard rule using one or two covariates
rather than the propensity score itself.

It is also important to consider the implications of common support for the estimand of interest.
Examining the common support may indicate that it is not possible to reliably estimate the
ATE. This could happen, for example, if there are controls outside the range of the treated
individuals and thus no way to estimate Y (1) for the controls without extensive extrapolation.
When estimating the ATT it may be fine (and in fact beneficial) to discard controls outside the
range of the treated individuals, but discarding treated individuals may change the group for
which the results apply (Crump et al., 2009).

4 Diagnosing matches
Perhaps the most important step in using matching methods is to diagnose the quality of the
resulting matched samples. All matching should be followed by an assessment of the covariate
balance in the matched groups, where balance is defined as the similarity of the empirical
distributions of the full set of covariates in the matched treated and control groups. In other
words, we would like the treatment to be unrelated to the covariates, such that p̃(X|T = 1) = p̃
(X|T = 0), where p denotes the empirical distribution. A matching method that results in highly
imbalanced samples should be rejected, and alternative methods should be attempted until a
well-balanced sample is attained. In some situations the diagnostics may indicate that the
treated and control groups are too far apart to provide reliable estimates without heroic
modeling assumptions (e.g., Rubin, 2001; Agodini and Dynarski, 2004). In contrast to
traditional regression models, which do not examine the joint distribution of the predictors
(and in particular of treatment assignment and the covariates), matching methods will make it
clear when it is not possible to separate the effect of the treatment from other differences
between the groups. A well-specified regression model of the outcome with many interactions
would show this imbalance and may be an effective method for estimating treatment effects
(Schafer and Kang, 2008), but complex models like that are only rarely used.

When assessing balance we would ideally compare the multidimensional histograms of the
covariates in the matched treated and control groups. However, multidimensional histograms
are very coarse and/or will have many zero cells. We thus are left examining the balance of
lower-dimensional summaries of that joint distribution, such as the marginal distributions of
each covariate. Since we are attempting to examine different features of the multidimensional
distribution, though, it is helpful to do a number of different types of balance checks, to obtain
a more complete picture.

All balance metrics should be calculated in ways similar to how the outcome analyses will be
run, discussed further in Section 5. For example, if subclassification was done, the balance
measures should be calculated within each subclass and then aggregated. If weights will be
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used in analyses (either as IPTW or because of variable ratio or full matching), they should
also be used in calculating the balance measures (Joffe et al., 2004).

4.1 Numerical diagnostics
One of the most common numerical balance diagnostics is the difference in means of each
covariate, divided by the standard deviation in the full treated group: . This measure,
sometimes referred to as the “standardized bias” or “standardized difference in means,” is
similar to an effect size and is compared before and after matching (Rosenbaum and Rubin,
1985b). The same standard deviation should be used in the standardization before and after
matching. The standardized difference of means should be computed for each covariate, as
well as two-way interactions and squares. For binary covariates, either this same formula can
be used (treating them as if they were continuous), or a simple difference in proportions can
be calculated (Austin, 2009).

Rubin (2001) presents three balance measures based on the theory in Rubin and Thomas
(1996) that provide a comprehensive view of covariate balance:

1. The standardized difference of means of the propensity score

2. The ratio of the variances of the propensity score in the treated and control groups

3. For each covariate, the ratio of the variance of the residuals orthogonal to the
propensity score in the treated and control groups.

Rubin (2001) illustrates these diagnostics in an example with 146 covariates. For regression
adjustment to be trustworthy, the absolute standardized differences of means should be less
than 0.25 and the variance ratios should be between 0.5 and 2 (Rubin, 2001). These guidelines
are based both on the assumptions underlying regression adjustment as well as on results in
Rubin (1973b) and Cochran and Rubin (1973), which used simulations to estimate the bias
resulting from a number of treatment effect estimation procedures when the true relationship
between the covariates and outcome is even moderately non-linear.

Although common, hypothesis tests and p-values that incorporate information on the sample
size (e.g., t-tests) should not be used as measures of balance, for two main reasons (Austin,
2007; Imai et al., 2008). First, balance is inherently an in-sample property, without reference
to any broader population or super-population. Second, hypothesis tests can be misleading as
measures of balance, because they often conflate changes in balance with changes in statistical
power. Imai et al. (2008) show an example where randomly discarding control individuals
seemingly leads to increased balance, simply because of the reduced power. In particular,
hypothesis tests should not be used as part of a stopping rule to select a matched sample when
those samples have varying sizes (or effective sample sizes). Some researchers argue that
hypothesis tests are okay for testing balance since the outcome analysis will also have reduced
power for estimating the treatment effect (Hansen, 2008), but that argument requires trading
off Type I and Type II errors. The cost of those two types of errors may differ for balance
checking and treatment effect estimation.

4.2 Graphical diagnostics
With many covariates it can be difficult to carefully examine numeric diagnostics for each;
graphical diagnostics can be helpful for getting a quick assessment of the covariate balance. A
first step is to examine the distribution of the propensity scores in the original and matched
groups; this is also useful for assessing common support. Figure 1 shows an example with
adequate overlap of the propensity scores, with a good control match for each treated individual.
For weighting or subclassification, plots such as this can show the dots with their size
proportional to their weight.
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For continuous covariates, we can also examine quantile-quantile (QQ) plots, which compare
the empirical distributions of each variable in the treated and control groups (this could also
be done for the variables squared or two-way interactions, getting at second moments). QQ
plots compare the quantiles of a variable in the treatment group against the corresponding
quantiles in the control group. If the two groups have identical empirical distributions, all points
would lie on the 45 degree line. For weighting methods, weighted boxplots can provide similar
information (Joffe et al., 2004).

Finally, a plot of the standardized differences of means, as in Figure 2, gives us a quick overview
of whether balance has improved for individual covariates (Ridgeway et al., 2006). In this
example the standardized difference of means of each covariate has decreased after matching.
In some situations researchers may find that the standardized difference of means of a few
covariates will increase. This may be particularly true of covariates with small differences
before matching, since they will not factor heavily into the propensity score model (since they
are not predictive of treatment assignment). In these cases researchers should consider whether
the increase in bias on those covariates is problematic, which it may be if those covariates are
strongly related to the outcome, and modify the matching accordingly (Ho et al., 2007). One
solution for that may be to do Mahalanobis matching on those covariates within propensity
score calipers.

5 Analysis of the outcome
Matching methods are not themselves methods for estimating causal effects. After the matching
has created treated and control groups with adequate balance (and the observational study thus
“designed”), researchers can move to the outcome analysis stage. This stage will generally
involve regression adjustments using the matched samples, with the details of the analysis
depending on the structure of the matching. A key point is that matching methods are not
designed to “compete” with modeling adjustments such as linear regression, and in fact the
two methods have been shown to work best in combination (Rubin, 1973b; Carpenter, 1977;
Rubin, 1979; Robins and Rotnitzky, 1995; Heckman et al., 1997; Rubin and Thomas, 2000;
Glazerman et al., 2003; Abadie and Imbens, 2006). This is similar to the idea of “double
robustness,” and the intuition is the same as that behind regression adjustment in randomized
experiments, where the regression adjustment is used to “clean up” small residual covariate
imbalance between the groups. Matching methods should also make the treatment effect
estimates less sensitive to particular outcome model specifications (Ho et al., 2007).

The following sections describe how outcome analyses should proceed after each of the major
types of matching methods described above. When weighting methods are used, the weights
are used directly in regression models, for example using weighted least squares. We focus on
parametric modeling approaches since those are the most commonly used, however non-
parametric permutation-based tests, such as Fisher’s exact test, are also appropriate, as detailed
in Rosenbaum (2002). The best results are found when estimating marginal treatment effects,
such as differences in means or differences in proportions. Greenland et al. (1999) and Austin
(2007) discuss some of the challenges in estimating non-collapsible conditional treatment
effects and which matching methods perform best for those situations.

5.1 After k:1 matching
When each treated individual has received k matches, the outcome analysis proceeds using the
matched samples, as if those samples had been generated through randomization. There is
debate about whether the analysis needs to account for the matched pair nature of the data
(Austin, 2007). However, there are at least two reasons why it is not necessary to account for
the matched pairs (Stuart, 2008; Schafer and Kang, 2008). First, conditioning on the variables
that were used in the matching process (such as through a regression model) is sufficient.
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Second, propensity score matching in fact does not guarantee that the individual pairs will be
well-matched on the full set of covariates, only that groups of individuals with similar
propensity scores will have similar covariate distributions. Thus, it is more common to simply
pool all the matches into matched treated and control groups and run analyses using the groups
as a whole, rather than using the individual matched pairs. In essence, researchers can do the
exact same analysis they would have done using the original data, but using the matched data
instead (Ho et al., 2007).

Weights need to be incorporated into the analysis for matching with replacement or variable
ratio matching (Dehejia and Wahba, 1999; Hill et al., 2004). When matching with replacement,
control group individuals receive a frequency weight that reflects the number of times they
were selected as a match. When using variable ratio matching, control group members receive
a weight that is proportional to the number of controls matched to “their” treated individual.
For example, if 1 treated individual was matched to 3 controls, each of those controls receives
a weight of 1/3. If another treated individual was matched to just 1 control, that control receives
a weight of 1.

5.2 After subclassification or full matching
With standard subclassification (e.g., the formation of 5 subclasses), effects are generally
estimated within each subclass and then aggregated across subclasses (Rosenbaum and Rubin,
1984). Weighting the subclass estimates by the number of treated individuals in each subclass
estimates the ATT; weighting by the overall number of individuals in each subclass estimates
the ATE. There may be fairly substantial imbalance remaining in each subclass and thus it is
important to do regression adjustment within each subclass, with the treatment indicator and
covariates as predictors (Lunceford and Davidian, 2004). When the number of subclasses is
too large–and the number of individuals within each subclass too small–to estimate separate
regression models within each subclass, a joint model can be fit, with subclass and subclass
by treatment indicators (fixed effects). This is especially useful for full matching. This
estimates a separate effect for each subclass, but assumes that the relationship between the
covariates X and the outcome is constant across subclasses. Specifically, models such as Yij =
β0j + β1jTij + γXij + eij are fit, where i indexes individuals and j indexes subclasses. In this
model, β1j is the treatment effect for subclass j, and these effects are aggregated across

subclasses to obtain an overall treatment effect: , where J is the number of
subclasses, Nj is the number of individuals in subclass j, and N is the total number of individuals.
(This formula weights subclasses by their total size, so estimates the ATE, but could be
modified to estimate the ATT). This procedure is somewhat more complicated for non-
continuous outcomes when the estimand of interest, e.g., an odds ratio, is non-collapsible. In
that case the outcome proportions in each treatment group should be aggregated and then
combined.

5.3 Variance estimation
One of the most debated topics in the literature on matching is variance estimation. Researchers
disagree on whether uncertainty in the propensity score estimation or the matching procedure
needs to be taken into account, and if so, how. Some researchers (e.g., Ho et al., 2007) adopt
an approach similar to randomized experiments, where the models are run condtitinal on the
covariates, which are treated as fixed and exogenous. Uncertainty regarding the matching
process is not taken into account. Other researchers argue that uncertainty in the propensity
score model needs to be accounted for in any analysis. However, in fact under fairly general
conditions (Rubin and Thomas, 1996; Rubin and Stuart, 2006), using estimated rather than
true propensity scores leads to an overestimate of variance, implying that not accounting for
the uncertainty in using estimated rather than true values will be conservative in the sense of
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yielding confidence intervals that are wider than necessary. Robins et al. (1992) also show the
benefit of using estimated rather than true propensity scores. Analytic expressions for the bias
and variance reduction possible for these situations are given in Rubin and Thomas (1992b).
Specifically, Rubin and Thomas (1992b) states that “…with large pools of controls, matching
using estimated linear propensity scores results in approximately half the variance for the
difference in the matched sample means as in corresponding random samples for all covariates
uncorrelated with the population discriminant.” This finding has been confirmed in simulations
(Rubin and Thomas, 1996) and an empirical example (Hill et al., 1999). Thus, when it is
possible to obtain 100% or nearly 100% bias reduction by matching on true or estimated
propensity scores, using the estimated propensity scores will result in more precise estimates
of the average treatment effect. The intuition is that the estimated propensity score accounts
for chance imbalances between the groups, in addition to the systematic differences–a situation
where overfitting is good. When researchers want to account for the uncertainty in the
matching, a bootstrap procedure has been found to outperform other methods (Lechner,
2002; Hill and Reiter, 2006). There are also some empirical formulas for variance estimation
for particular matching scenarios (e.g., Abadie and Imbens, 2006, 2009b; Schafer and Kang,
2008), but this is an area for future research.

6 Discussion
6.1 Additional issues

This section raises additional issues that arise when using any matching method, and also
provides suggestions for future research.

6.1.1 Missing covariate values—Most of the literature on matching and propensity scores
assumes fully observed covariates, but of course most studies have at least some missing data.
One possibility is to use generalized boosted models to estimate propensity scores, as they do
not require fully observed covariates. Another recommended approach is to do a simple single
imputation of the missing covariates and include missing data indicators in the propensity score
model. This essentially matches based both on the observed values and on the missing data
patterns. Although this is generally not an appropriate strategy for dealing with missing data
(Greenland and Finkle, 1995), it is an effective approach in the propensity score context.
Although it cannot balance the missing values themselves, this method will yield balance on
the observed covariates and the missing data patterns (Rosenbaum and Rubin, 1984). A more
flexible method is to use multiple imputation to impute the missing covariates, run the matching
and effect estimation separately within each “complete” data set, and then use the multiple
imputation combining rules to obtain final effect estimates (Rubin, 1987; Song et al., 2001).
Qu and Lipkovich (2009) illustrate this method and show good results for an adaptation that
also includes indicators of missing data patterns in the propensity score model.

In addition to development and investigation of matching methods that account for missing
data, one particular area needing development is balance diagnostics for settings with missing
covariate values, including dignostics that allow for nonignorable missing data mechanisms.
D’Agostino, Jr. and Rubin (2000) suggests a few simple diagnostics such as assessing
available-case means and standard deviations of the continuous variables, and comparing
available-case cell proportions for the categorical variables and missing-data indicators, but
diagnostics should be developed that explicitly consider the interactions between the missing
data and treatment assignment mechanisms.

6.1.2 Violation of ignorable treatment assignment—A critique of any non-
experimental study is that there may be unobserved variables related to both treatment
assignment and the outcome, violating the assumption of ignorable treatment assignment and

Stuart Page 17

Stat Sci. Author manuscript; available in PMC 2010 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



biasing the treatment effect estimates. Since ignorability can never be directly tested,
researchers have instead developed sensitivity analyses to assess its plausibility, and how
violations of ignorability may affect study conclusions. One type of plausibility test estimates
an effect on a variable that is known to be unrelated to the treatment, such as a pre-treatment
measure of the outcome variable (as in Imbens, 2004), or the difference in outcomes between
multiple control groups (as in Rosenbaum, 1987b). If the test indicates that the effect is not
equal to zero, then the assumption of ignorable treatment assignment is deemed to be less
plausible.

A second approach is to perform analyses of sensitivity to an unobserved variable. Rosenbaum
and Rubin (1983a) extends the ideas of Cornfield (1959), examining how strong the
correlations would have to be between a hypothetical unobserved covariate and both treatment
assignment and the outcome to make the observed treatment effect go away. Similarly, bounds
can be created for the treatment effect, given a range of potential correlations of the unobserved
covariate with treatment assignment and the outcome (Rosenbaum, 2002). Although sensitivity
analysis methods are becoming more and more developed, they are still used relatively
infrequently. Newly available software (McCaffrey et al., 2004; Keele, 2009) will hopefully
help facilitate their adoption by more researchers.

6.1.3 Choosing between methods—There are a wide variety of matching methods
available, and little guidance to help applied researchers select between them (Section 6.2
makes an attempt). The primary advice to this point has been to select the method that yields
the best balance (e.g., Harder et al., 2007; Ho et al., 2007; Rubin, 2007). But defining the best
balance is complex, as it involves trading off balance on multiple covariates. Possible ways to
choose a method include 1) the method that yields the smallest standardized difference of means
across the largest number of covariates, 2) the method that minimizes the standardized
difference of means of a few particularly prognostic covariates, and 3) the method that results
in the fewest number of “large” standardized differences of means (greater than 0.25). Another
promising direction is work by Diamond and Sekhon (2006), which automates the matching
procedure, finding the best matches according to a set of balance measures. Further research
needs to compare the performance of treatment effect estimates from methods using criteria
such as those in Diamond and Sekhon (2006) and Harder et al. (2007), to determine what the
proper criteria should be and examine issues such as potential over-fitting to particular
measures.

6.1.4 Multiple treatment doses—Throughout this discussion of matching, it has been
assumed that there are just two groups: treated and control. However, in many studies there
are actually multiple levels of the treatment (e.g., doses of a drug). Rosenbaum (2002)
summarizes two methods for dealing with doses of treatment. In the first method, the propensity
score is still a scalar function of the covariates (e.g., Joffe and Rosenbaum, 1999; Lu et al.,
2001). In the second method, each of the levels of treatment has its own propensity score (e.g.,
Rosenbaum, 1987a; Imbens, 2000) and each propensity score is used one at a time to estimate
the distribution of responses that would have been observed if all individuals had received that
dose.

Encompassing these two approaches, Imai and van Dyk (2004) generalizes the propensity score
to arbitrary treatment regimes (including ordinal, categorical, and multi-dimensional). They
provide theorems for the properties of this generalized propensity score (the propensity
function), showing that it has properties similar to that of the propensity score in that adjusting
for the low-dimensional (not always scalar, but always low-dimensional) propensity function
balances the covariates. They advocate subclassification rather than matching, and provide two
examples as well as simulations showing the performance of adjustment based on the
propensity function. Diagnostics are also complicated in this setting, as it becomes more
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difficult to assess the balance of the resulting samples when there are multiple treatment levels.
Future work is needed to examine these issues.

6.2 Guidance for practice
So what are the take-away points and advice regarding when to use each of the many methods
discussed? While more work is needed to definitively answer that question, this section
attempts to pull together the current literature to provide advice for researchers interested in
estimating causal effects using matching methods. The lessons can be summarized as follows:

1. Think carefully about the set of covariates to include in the matching procedure, and
err on the side of including more rather than fewer. Is the ignorability assumption
reasonable given that set of covariates? If not, consider in advance whether there are
other datasets that may be more appropriate, or if there are sensitivity analyses that
can be done to strengthen the inferences.

2. Estimate the distance measure that will be used in the matching. Linear propensity
scores estimated using logistic regression, or propensity scores estimated using
generalized boosted models or boosted CART are good choices. If there are a few
covariates on which particularly close balance is desired (e.g., pre-treatment measures
of the outcome), consider using Mahalanobis distance within propensity score
calipers.

3. Examine the common support and implications for the estimand. If the ATE is of
substantive interest, is there enough overlap of the treated and control groups’
propensity scores to estimate the ATE? If not, could the ATT be estimated more
reliably? If the ATT is of interest, are there controls across the full range of the treated
group, or will it be difficult to estimate the effect for some treated individuals?

4. Implement a matching method.

• If estimating the ATE, good choices are generally IPTW or full matching.

• If estimating the ATT and there are many more control than treated
individuals (e.g., more than 3 times as many), k:1 nearest neighbor matching
without replacement is a good choice for its simplicity and good
performance.

• If estimating the ATT and there are not (or not many) more control than
treated individuals, appropriate choices are generally subclassification, full
matching, and weighting by the odds.

5. Examine the balance on covariates resulting from that matching method.

• If adequate, move forward with treatment effect estimation, using regression
adjustment on the matched samples.

• If imbalance on just a few covariates, consider incorporating exact or
Mahalanobis matching on those variables.

• If imbalance on quite a few covariates, try another matching method (e.g.,
move to k:1 matching with replacement) or consider changing the estimand
or the data.

Even if for some reason effect estimates will not be obtained using matching methods, it is
worthwhile to go through the steps outlined here to assess the adequacy of the data for
answering the question of interest. Standard regression diagnostics will not warn researchers
when there is insufficient overlap to reliably estimate causal effects; going through the process

Stuart Page 19

Stat Sci. Author manuscript; available in PMC 2010 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of estimating propensity scores and assessing balance before and after matching can be
invaluable in terms of helping researchers more forward with causal inference with confidence.

Matching methods are important tools for applied researchers and also have many open
research questions for statistical development. This paper has provided an overview of the
current literature on matching methods, guidance for practice, and a road map for future
research. Much research has been done in the past 30 years on this topic, however there are
still a number of open areas and questions to be answered. We hope that this paper, combining
results from a variety of disciplines, will promote awareness of and interest in matching
methods as an important and interesting area for future research.
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7 Software Appendix
In previous years software limitations made it difficult to implement many of the more
advanced matching methods. However, recent advances have made these methods more and
more accessible. This section lists some of the major matching procedures available. A
continuously updated version is also available at
http://www.biostat.jhsph.edu/~estuart/propensityscoresoftware.html.

• Matching software for R

– cem, http://gking.harvard.edu/cem/

Iacus, S.M., King, G., and Porro, G. (2009). cem: Coarsened exact matching
software. Can also be implemented through MatchIt.

– Matching, http://sekhon.berkeley.edu/matching

Sekhon, J. S. (in press). Matching: Multivariate and propensity score matching
with balance optimization. Forthcoming, Journal of Statistical Software. Uses
automated procedure to select matches, based on univariate and multivariate
balance diagnostics. Primarily k:1 matching, allows matching with or without
replacement, caliper, exact. Includes built-in effect and variance estimation
procedures

– Matchit, http://gking.harvard.edu/matchit

Ho, D.E., Imai, K., King, G., and Stuart, E.A. (in press). MatchIt: Nonparametric
preprocessing for parameteric causal inference. Forthcoming, Journal of
Statistical Software. Two-step process: does matching, then user does outcome
analysis. Wide array of estimation procedures and matching methods available:
nearest neighbor, Mahalanobis, caliper, exact, full, optimal, subclassification.
Built-in numeric and graphical diagnostics.

– optmatch, http://cran.r-project.org/web/packages/optmatch/index.html

Hansen, B.B., and Fredrickson, M. (2009). optmatch: Functions for optimal
matching. Variable ratio, optimal, and full matching. Can also be implemented
through MatchIt.

– PSAgraphics,
http://cran.r-project.org/web/packages/PSAgraphics/index.html

Helmreich, J.E., and Pruzek, R.M. (2009). PSAgraphics: Propensity score
analysis graphics. Journal of Statistical Software 29(6). Package to do graphical
diagnostics of propensity score methods.

– rbounds, http://cran.r-project.org/web/packages/rbounds/index.html

Keele, L.J. (2009). Rbounds: An R Package For Sensitivity Analysis with
Matched Data. Does analysis of sensitivity to assumption of ignorable treatment
assignment.
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– twang, http://cran.r-project.org/doc/packages/twang.pdf

Ridgeway, G., McCaffrey, D., and Morral, A. (2006). twang: Toolkit for
weighting and analysis of nonequivalent groups. Functions for propensity score
estimating and weighting, nonresponse weighting, and diagnosis of the weights.
Primarily uses generalized boosted regression to estimate the propensity scores.

• Matching software for Stata

– cem, http://gking.harvard.edu/cem/

Iacus, S.M., King, G., and Porro, G. (2009). cem: Coarsened exact matching
software.

– match, http://www.economics.harvard.edu/faculty/imbens/software_imbens

Abadie, A., Drukker, D., Herr, J. L., and Imbens, G. W. (2004). Implementing
matching estimators for average treatment effects in Stata. The Stata Journal 4,
3, 290–311. Primarily k:1 matching (with replacement). Allows estimation of
ATT or ATE, including robust variance estimators.

– pscore, http://www.lrz-muenchen.de/~sobecker/pscore.html

Becker, S. and Ichino, A. (2002). Estimation of average treatment effects based
on propensity scores. The Stata Journal 2(4): 358–377. Does k:1 nearest neighbor
matching, radius (caliper) matching, and subclassification.

– psmatch2, http://econpapers.repec.org/software/bocbocode/S432001.html

http://www1.fee.uva.nl/scholar/mdw/leuven/stata

Leuven, E. and Sianesi, B. (2003). psmatch2. Stata module to perform full
Mahalanobis and propensity score matching, common support graphing, and
covariate imbalance testing. Allows k:1 matching, kernel weighting,
Mahalanobis matching. Includes built-in diagnostics and procedures for
estimating ATT or ATE.

– Note: 3 procedures for analysis of sensitivity to the ignorability assumption are
also available: rbounds (for continuous outcomes), mhbounds (for categorical
outcomes), and sensatt (to be used after the pscore procedures).

rbounds: http://econpapers.repec.org/software/bocbocode/s438301.htm

mhbounds: http://ideas.repec.org/p/diw/diwwpp/dp659.html

sensatt: http://ideas.repec.org/c/boc/bocode/s456747.html

• Matching software for SAS

– SAS usage note: http://support.sas.com/kb/30/971.html

– Greedy 1:1 matching,
http://www2.sas.com/proceedings/sugi26/p214-226.pdf

Parsons, L.S. (2005). Using SAS software to perform a case-control match on
propensity score in an observational study. In SAS SUGI 30, Paper 225–25.

– Gmatch macro,
http://mayoresearch.mayo.edu/mayo/research/biostat/upload/gmatch.sas

Kosanke, J., and Bergstralh, E. (2004). gmatch: Match 1 or more controls to cases
using the GREEDY algorithm.

– Proc assign, http://pubs.amstat.org/doi/abs/10.1198/106186001317114938
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http://cran.r-project.org/doc/packages/twang.pdf
http://gking.harvard.edu/cem/
http://www.economics.harvard.edu/faculty/imbens/software_imbens
http://www.lrz-muenchen.de/~sobecker/pscore.html
http://econpapers.repec.org/software/bocbocode/S432001.html
http://www1.fee.uva.nl/scholar/mdw/leuven/stata
http://econpapers.repec.org/software/bocbocode/s438301.htm
http://ideas.repec.org/p/diw/diwwpp/dp659.html
http://ideas.repec.org/c/boc/bocode/s456747.html
http://support.sas.com/kb/30/971.html
http://www2.sas.com/proceedings/sugi26/p214-226.pdf
http://mayoresearch.mayo.edu/mayo/research/biostat/upload/gmatch.sas
http://pubs.amstat.org/doi/abs/10.1198/106186001317114938


Can be used to perform optimal matching.

– 1:1 Mahalanobis matching within propensity score calipers,
www.lexjansen.com/pharmasug/2006/publichealthresearch/pr05.pdf

Feng, W.W., Jun, Y., and Xu, R. (2005). A method/macro based on propensity
score and Mahalanobis distance to reduce bias in treatment comparison in
observational study.

– Vmatch macro,
http://mayoresearch.mayo.edu/mayo/research/biostat/upload/vmatch.sas

Kosanke, J., and Bergstralh, E. (2004). Match cases to controls using variable
optimal matching. Variable ratio matching (optimal algorithm).

– Weighting, http://www.lexjansen.com/wuss/2006/Analytics/ANL-Leslie.pdf

Leslie, S. and Thiebaud, P. (2006). Using propensity scores to adjust for treatment
selection bias.
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http://www.lexjansen.com/wuss/2006/Analytics/ANL-Leslie.pdf


Figure 1.
Matches chosen using 1:1 nearest neighbor matching on propensity score. Black dots indicate
matched individuals; grey unmatched individuals. Data from Stuart and Green (2008).
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Figure 2.
Plot of standardized difference of means of 10 covariates before and after matching. Data from
Stuart and Green (2008).
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